Suppr超能文献

糖胺聚糖蛋白聚糖侧链对跟腱张力传递和纳米结构特性的影响。

The influence of glycosaminoglycan proteoglycan side chains on tensile force transmission and the nanostructural properties of Achilles tendons.

机构信息

School of Allied Health, Faculty of Health Science, Curtin University, Perth, Western Australia, Australia.

Dean, School of Science, Engineering and Technology, RMIT University Vietnam, Ho Chi Minh City, Vietnam.

出版信息

Microsc Res Tech. 2022 Jan;85(1):233-243. doi: 10.1002/jemt.23899. Epub 2021 Aug 13.

Abstract

This study investigates the nanostructural mechanisms that lie behind load transmission in tendons and the role of glycosaminoglycans (GAGs) in the transmission of force in the tendon extracellular matrix. The GAGs in white New Zealand rabbit Achilles tendons were enzymatically depleted, and the tendons subjected to cyclic loading at 6% strain for up to 2 hr. A nanoscale morphometric assessment of fibril deformation under strain was linked with the decline in the tendon macroscale mechanical properties. An atomic force microscope (AFM) was employed to characterize the D-periodicity within and between fibril bundles (WFB and BFB, respectively). By the end of the second hour of the applied strain, the WFB and BFB D-periodicities had significantly increased in the GAG-depleted group (29% increase compared with 15% for the control, p < .0001). No statistically significant differences were found between WFB and BFB D-periodicities in either the control or GAG-depleted groups, suggesting that mechanical load in Achilles tendons is uniformly distributed and fairly homogenous among the WFB and BFB networks. The results of this study have provided evidence of a cycle-dependent mechanism of damage accumulation. The accurate quantification of fibril elongation (measured as the WFB and BFB D-periodicity lengths) in response to macroscopic applied strain has assisted in assessing the complex structure-function relationship in Achilles tendon.

摘要

本研究探讨了肌腱中力传递的纳米结构机制以及糖胺聚糖(GAGs)在肌腱细胞外基质中力传递中的作用。通过酶消化的方法从白色新西兰兔跟腱中去除 GAGs,然后对肌腱进行 6%应变的循环加载,持续时间长达 2 小时。在应变下对原纤维变形的纳米级形态计量评估与肌腱宏观力学性能的下降相关联。原子力显微镜(AFM)用于表征原纤维束内(WFB)和原纤维束间(BFB)的 D 周期性。在施加应变的第二个小时结束时,GAG 耗竭组的 WFB 和 BFB D 周期性显著增加(与对照组相比增加了 29%,p <.0001)。在对照组或 GAG 耗竭组中,WFB 和 BFB D 周期性之间均未发现统计学上的显著差异,这表明在跟腱中机械载荷均匀分布且在 WFB 和 BFB 网络之间相当均匀。本研究的结果提供了一个关于损伤积累的循环依赖机制的证据。宏观施加应变下原纤维伸长的精确定量(以 WFB 和 BFB D 周期性长度来衡量)有助于评估跟腱的复杂结构-功能关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验