Suppr超能文献

运用 PSO-ELM 模型来逼近 Trolox 当量抗氧化能力,这是食品最重要的生物学特性之一。

Implementing PSO-ELM Model to Approximate Trolox Equivalent Antioxidant Capacity as One of the Most Important Biological Properties of Food.

机构信息

DS & CI Research Group, Universitas Sumatera Utara, Medan, Indonesia.

Department of Accounting and Taxation, Plekhanov Russian University of Economics (РRUE), Stremyanny Lane 36, 117997 Moscow, Russia.

出版信息

Biomed Res Int. 2021 Aug 2;2021:3805748. doi: 10.1155/2021/3805748. eCollection 2021.

Abstract

In this paper, the Trolox equivalent antioxidant capacity (TEAC) is estimated through a robust machine-learning algorithm known as the Particle Swarm Optimization-based Extreme Learning Machine (PSO-ELM) model. For this purpose, a large dataset from previously published reports was gathered. Various analyses were performed to evaluate the proposed model. The results of the statistical analysis showed that this model can predict the actual values with high accuracy, so that the calculated and RMSE values were equal to 0.973 and 3.56, respectively. Sensitivity analysis was also performed on the effective input parameters. The leverage technique was also performed to check the accuracy of real data, and the results showed that the majority of data are reliable. This simple yet accurate model can be very powerful in predicting the Trolox equivalent antioxidant capacity values and can be a good alternative to laboratory data.

摘要

本文通过一种名为粒子群优化极限学习机(PSO-ELM)的强大机器学习算法来估计 Trolox 等效抗氧化能力(TEAC)。为此,收集了来自先前已发表报告的大量数据集。进行了各种分析来评估所提出的模型。统计分析的结果表明,该模型可以高精度地预测实际值,因此计算的 和 RMSE 值分别等于 0.973 和 3.56。还对有效输入参数进行了敏感性分析。还使用杠杆技术检查了真实数据的准确性,结果表明大多数数据是可靠的。这种简单而准确的模型在预测 Trolox 等效抗氧化能力值方面非常强大,并且可以替代实验室数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdd9/8355959/a9f5b25f96e1/BMRI2021-3805748.001.jpg

相似文献

7
Antioxidant Capacity: Experimental Determination by EPR Spectroscopy and Mathematical Modeling.
J Agric Food Chem. 2015 Jul 22;63(28):6319-24. doi: 10.1021/acs.jafc.5b01478. Epub 2015 Jul 8.
8
Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors.
Environ Sci Pollut Res Int. 2017 Jul;24(20):16702-16724. doi: 10.1007/s11356-017-9283-z. Epub 2017 May 30.
10
Temperature Characteristics Modeling for GaN PA Based on PSO-ELM.
Micromachines (Basel). 2024 Aug 5;15(8):1008. doi: 10.3390/mi15081008.

引用本文的文献

1
and study of bioactive compounds of for targeting neuropilins in breast cancer.
Front Chem. 2023 Oct 11;11:1273149. doi: 10.3389/fchem.2023.1273149. eCollection 2023.

本文引用的文献

3
Antioxidants and antioxidant methods: an updated overview.
Arch Toxicol. 2020 Mar;94(3):651-715. doi: 10.1007/s00204-020-02689-3. Epub 2020 Mar 16.
4
Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications.
Molecules. 2019 Nov 15;24(22):4132. doi: 10.3390/molecules24224132.
5
Bioactive compounds and pharmacological and food applications of Syzygium cumini - a review.
Food Funct. 2018 Dec 13;9(12):6096-6115. doi: 10.1039/c8fo00654g.
6
Functional Food and Cardiovascular Disease Prevention and Treatment: A Review.
J Am Coll Nutr. 2018 Jul;37(5):429-455. doi: 10.1080/07315724.2017.1410867. Epub 2018 Mar 12.
7
High Molecular Weight Plant Polyphenolics (Tannins) as Biological Antioxidants.
J Agric Food Chem. 1998 May;46(5):1887-1892. doi: 10.1021/jf970975b.
8
Spectrophotometric determination of antioxidant activity.
Redox Rep. 1996 Jun;2(3):161-71. doi: 10.1080/13510002.1996.11747044.
9
Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays.
J Agric Food Chem. 2016 Feb 10;64(5):997-1027. doi: 10.1021/acs.jafc.5b04739. Epub 2016 Jan 27.
10
Extreme learning machine for regression and multiclass classification.
IEEE Trans Syst Man Cybern B Cybern. 2012 Apr;42(2):513-29. doi: 10.1109/TSMCB.2011.2168604. Epub 2011 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验