Suppr超能文献

建模条件参考区域:在血糖标志物中的应用。

Modeling conditional reference regions: Application to glycemic markers.

机构信息

Department of Statistics, Mathematical Analysis, and Optimization, Universidade de Santiago de Compostela, Galicia, Spain.

Statistical Inference, Decision and Operations Research, Universidade de Vigo, Galicia, Spain.

出版信息

Stat Med. 2021 Nov 20;40(26):5926-5946. doi: 10.1002/sim.9163. Epub 2021 Aug 15.

Abstract

Many clinical decisions are taken based on the results of continuous diagnostic tests. Usually, only the results of one single test is taken into consideration, the interpretation of which requires a reference range for the healthy population. However, the use of two different tests, can be necessary in the diagnosis of certain diseases. This obliges a bivariate reference region be available for their interpretation. It should also be remembered that reference regions may depend on patient variables (eg, age and sex) independent of the suspected disease. However, few proposals have been made regarding the statistical modeling of such reference regions, and those put forward have always assumed a Gaussian distribution, which can be rather restrictive. The present work describes a new statistical method that allows such reference regions to be estimated with no insistence on the results being normally distributed. The proposed method is based on a bivariate location-scale model that provides probabilistic regions covering a specific percentage of the bivariate data, dependent on certain covariates. The reference region is estimated nonparametrically and the nonlinear effects of continuous covariates via polynomial kernel smoothers in additive models. The bivariate model is estimated using a backfitting algorithm, and the optimal smoothing parameters of the kernel smoothers selected by cross-validation. The model performed satisfactorily in simulation studies under the assumption of non-Gaussian conditions. Finally, the proposed methodology was found to be useful in estimating a reference region for two continuous diagnostic tests for diabetes (fasting plasma glucose and glycated hemoglobin), taking into account the age of the patient.

摘要

许多临床决策都是基于连续诊断测试的结果做出的。通常,仅考虑单次测试的结果,而对其进行解释则需要参考健康人群的范围。然而,在某些疾病的诊断中,可能需要使用两种不同的测试。这就需要有一个双变量参考区间来进行解释。还应该记住,参考区间可能取决于与可疑疾病无关的患者变量(例如,年龄和性别)。但是,关于此类参考区间的统计建模的建议很少,并且提出的建议始终假设为正态分布,这可能相当严格。本工作描述了一种新的统计方法,该方法可以在不坚持结果正态分布的情况下估计此类参考区间。所提出的方法基于双变量位置-尺度模型,该模型提供了覆盖特定百分比的双变量数据的概率区域,这取决于某些协变量。通过在加性模型中使用多项式核平滑器来对非参数估计参考区域和连续协变量的非线性效应。使用回溯拟合算法对双变量模型进行估计,并通过交叉验证选择核平滑器的最优平滑参数。在非正态条件的假设下,该模型在模拟研究中表现良好。最后,发现该方法在考虑患者年龄的情况下,对用于诊断糖尿病的两种连续诊断测试(空腹血浆葡萄糖和糖化血红蛋白)的参考区间的估计很有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验