Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, USA.
Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, TX, 77005, USA.
Adv Mater. 2021 Sep;33(38):e2101312. doi: 10.1002/adma.202101312. Epub 2021 Aug 15.
Synthetic polymer membranes are enabling components in key technologies at the water-energy nexus, including desalination and energy conversion, because of their high water/salt selectivity or ionic conductivity. However, many applications at the water-energy nexus require ion selectivity, or separation of specific ionic species from other similar species. Here, the ion selectivity of conventional polymeric membrane materials is assessed and recent progress in enhancing selective transport via tailored free volume elements and ion-membrane interactions is described. In view of the limitations of polymeric membranes, three material classes-porous crystalline materials, 2D materials, and discrete biomimetic channels-are highlighted as possible candidates for ion-selective membranes owing to their molecular-level control over physical and chemical properties. Lastly, research directions and critical challenges for developing bioinspired membranes with molecular recognition are provided.
合成聚合物膜是水-能源交叉领域关键技术中的重要组成部分,包括海水淡化和能量转换,因为它们具有高水/盐选择性或离子电导率。然而,水-能源交叉领域的许多应用需要离子选择性,即从其他类似物质中分离特定的离子种类。在这里,评估了传统聚合物膜材料的离子选择性,并描述了通过定制自由体积元素和离子-膜相互作用来增强选择性传输的最新进展。鉴于聚合物膜的局限性,由于其对物理和化学性质的分子级控制,三类材料 - 多孔结晶材料、二维材料和离散仿生通道 - 被突出为离子选择性膜的可能候选材料。最后,提供了用于开发具有分子识别功能的仿生膜的研究方向和关键挑战。