Wu Hao, Mirkhanov Shamil, Ng Wern, Oxborrow Mark
Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
Phys Rev Lett. 2021 Jul 30;127(5):053604. doi: 10.1103/PhysRevLett.127.053604.
We experimentally demonstrate the temporary removal of thermal photons from a microwave mode at 1.45 GHz through its interaction with the spin-polarized triplet states of photo-excited pentacene molecules doped within a p-terphenyl crystal at room temperature. The crystal functions electromagnetically as a narrowband cryogenic load, removing photons from the otherwise room-temperature mode via stimulated absorption. The noise temperature of the microwave mode dropped to 50_{-32}^{+18} K (as directly inferred by noise-power measurements), while the metal walls of the cavity enclosing the mode remained at room temperature. Simulations based on the same system's behavior as a maser (which could be characterized more accurately) indicate the possibility of the mode's temperature sinking to ∼10 K (corresponding to ∼140 microwave photons). These observations, when combined with engineering improvements to deepen the cooling, identify the system as a narrowband yet extremely convenient platform-free of cryogenics, vacuum chambers, and strong magnets-for realizing low-noise detectors, quantum memory, and quantum-enhanced machines (such as heat engines) based on strong spin-photon coupling and entanglement at microwave frequencies.
我们通过在室温下,使处于1.45吉赫兹微波模式的光子与掺杂在对三联苯晶体中的光激发并具有自旋极化三重态的并五苯分子相互作用,实验证明了该模式中热光子的临时移除。该晶体电磁作用相当于一个窄带低温负载,通过受激吸收从原本处于室温的模式中移除光子。微波模式的噪声温度降至50_{-32}^{+18} 开尔文(由噪声功率测量直接推断得出),而包围该模式的腔的金属壁仍保持在室温。基于该系统作为微波激射器(可更精确地进行表征)的相同行为所做的模拟表明,该模式温度有可能降至约10开尔文(对应约140个微波光子)。这些观测结果,再结合为深化冷却而进行的工程改进,表明该系统是一个窄带且极为便利的平台——无需低温设备、真空腔和强磁体——用于基于微波频率下强自旋 - 光子耦合和纠缠来实现低噪声探测器、量子存储器以及量子增强机器(如热机)。