Department of Materials, Imperial College London, London, SW7 2AZ, UK.
Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
Adv Mater. 2023 Jun;35(22):e2300441. doi: 10.1002/adma.202300441. Epub 2023 Apr 9.
Masers can deliver ultralow-noise amplification of microwave signals in medical imaging and deep-space communication, with recent research being rekindled through the discovery of gain media operating at room-temperature, eschewing bulky cryogenics that hindered their use. This work shows the discovery of 6,13-diazapentacene doped in para-terphenyl (DAP:PTP) as a maser gain medium that can operate at room-temperature, without an external magnetic field. With a maser output power of -10 dBm, it is on par with pentacene-doped para-terphenyl in masing power, while possessing compelling advantages such as faster amplification startup times, being pumped by longer wavelength light at 620 nm and greater chemical stability from nitrogen groups. Furthermore, the maser bursts from DAP:PTP allow one to reach the strong coupling regime for cavity quantum electrodynamics, with a high cooperativity of 182. The optical and microwave spin dynamics of DAP:PTP are studied in order to evaluate its capabilities as a maser gain medium, where it features fast intersystem crossing and an advantageously higher triplet quantum yield. The results pave the way for the future discovery of similar maser materials and help designate them as promising candidates for quantum sensors, optoelectronic devices and the study of cavity quantum electrodynamic effects at room-temperature.
微波激射器可以在医学成像和深空通信中提供超低噪声微波信号放大,最近通过发现可在室温下工作的增益介质重新激发了这项研究,从而避免了阻碍其使用的庞大低温技术。这项工作展示了在para-terphenyl(DAP:PTP)中掺杂 6,13-二氮杂戊搭的发现,作为一种可以在室温下工作的微波激射器增益介质,无需外加磁场。微波激射器的输出功率为-10dBm,与掺杂 pentacene 的 para-terphenyl 的激射功率相当,同时具有更快的放大启动时间、用 620nm 的长波长光泵浦以及氮基团带来的更高化学稳定性等优势。此外,DAP:PTP 的激射脉冲可以使腔量子电动力学达到强耦合状态,具有 182 的高协同性。为了评估 DAP:PTP 作为微波激射器增益介质的性能,研究了其光学和微波自旋动力学,其具有快速的系间窜越和有利的更高三重态量子产率。这些结果为未来发现类似的微波激射器材料铺平了道路,并有助于将其指定为量子传感器、光电设备以及室温下腔量子电动力学效应研究的有前途的候选材料。