Suppr超能文献

基于机器学习的住院患者跌倒风险评估模型。

A Machine Learning-Based Fall Risk Assessment Model for Inpatients.

机构信息

Author Affiliations: Department of Nursing (Ms Liu), Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi; Department of Information Management and Institute of Healthcare Information Management (Ms Liu and Dr Lin), Center for Innovative Research on Aging Society (Dr Lin), National Chung Cheng University, Chiayi; National Central University, Taoyuan City (Dr Hu); MOST AI Biomedical Research Center, National Cheng Kung University, Tainan (Dr Hu), Taiwan, Republic of China.

出版信息

Comput Inform Nurs. 2021 Apr 26;39(8):450-459. doi: 10.1097/CIN.0000000000000727.

Abstract

Falls are one of the most common accidents among inpatients and may result in extended hospitalization and increased medical costs. Constructing a highly accurate fall prediction model could effectively reduce the rate of patient falls, further reducing unnecessary medical costs and patient injury. This study applied data mining techniques on a hospital's electronic medical records database comprising a nursing information system to construct inpatient-fall-prediction models for use during various stages of inpatient care. The inpatient data were collected from 15 inpatient wards. To develop timely and effective fall prediction models for inpatients, we retrieved the data of multiple-time assessment variables at four points during hospitalization. This study used various supervised machine learning algorithms to build classification models. Four supervised learning and two classifier ensemble techniques were selected for model development. The results indicated that Bagging+RF classifiers yielded optimal prediction performance at all four points during hospitalization. This study suggests that nursing personnel should be aware of patients' risk factors based on comprehensive fall risk assessment and provide patients with individualized fall prevention interventions to reduce inpatient fall rates.

摘要

跌倒在住院患者中是最常见的意外之一,可能导致住院时间延长和医疗费用增加。构建一个高度准确的跌倒预测模型可以有效降低患者跌倒率,进一步降低不必要的医疗费用和患者伤害。本研究应用数据挖掘技术对医院的电子病历数据库(包括护理信息系统)进行分析,构建了用于住院患者各个阶段护理的跌倒预测模型。住院患者数据来自 15 个住院病房。为了为住院患者开发及时有效的跌倒预测模型,我们在住院期间四个时间点检索了多次评估变量的数据。本研究使用了各种监督机器学习算法来构建分类模型。选择了四种监督学习和两种分类器集成技术来进行模型开发。结果表明,Bagging+RF 分类器在住院期间的四个时间点都具有最佳的预测性能。本研究建议护理人员应根据全面的跌倒风险评估了解患者的风险因素,并为患者提供个体化的跌倒预防干预措施,以降低住院患者的跌倒率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验