Suppr超能文献

以导管和射线为特异性的单体酚生物合成来工程化杨树的纤维低木质化和提高糖化。

Vessel- and ray-specific monolignol biosynthesis as an approach to engineer fiber-hypolignification and enhanced saccharification in poplar.

机构信息

Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium.

VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium.

出版信息

Plant J. 2021 Nov;108(3):752-765. doi: 10.1111/tpj.15468. Epub 2021 Aug 31.

Abstract

Lignin is one of the main factors determining recalcitrance to processing of lignocellulosic biomass towards bio-based materials and fuels. Consequently, wood of plants engineered for low lignin content is typically more amenable to processing. However, lignin-modified plants often exhibit collapsed vessels and associated growth defects. Vessel-specific reintroduction of lignin biosynthesis in dwarfed low-lignin cinnamoyl-CoA reductase1 (ccr1) Arabidopsis mutants using the ProSNBE:AtCCR1 construct overcame the yield penalty while maintaining high saccharification yields, and showed that monolignols can be transported between the different xylem cells acting as 'good neighbors' in Arabidopsis. Here, we translated this research into the bio-energy crop poplar. By expressing ProSNBE:AtCCR1 into CRISPR/Cas9-generated ccr2 poplars, we aimed for vessel-specific lignin biosynthesis to: (i) achieve growth restoration while maintaining high saccharification yields; and (ii) study the existence of 'good neighbors' in poplar wood. Analyzing the resulting ccr2 ProSNBE:AtCCR1 poplars showed that vessels and rays act as good neighbors for lignification in poplar. If sufficient monolignols are produced by these cells, monolignols migrate over multiple cell layers, resulting in a restoration of the lignin amount to wild-type levels. If the supply of monolignols is limited, the monolignols are incorporated into the cell walls of the vessels and rays producing them and their adjoining cells resulting in fiber hypolignification. One such fiber-hypolignified line had 18% less lignin and, despite its small yield penalty, had an increase of up to 71% in sugar release on a plant base upon saccharification.

摘要

木质素是决定木质纤维素生物质加工为生物基材料和燃料时抗性的主要因素之一。因此,木质素含量低的工程植物木材通常更容易加工。然而,木质素修饰的植物通常表现出管胞的塌陷和相关的生长缺陷。利用 ProSNBE:AtCCR1 构建体在矮小的低木质素肉桂酰辅酶 A 还原酶 1(ccr1)拟南芥突变体中特异性地重新引入木质素生物合成,克服了产量损失,同时保持了高糖化产量,并表明在拟南芥中,木质素单体可以在不同的木质部细胞之间运输,充当“好邻居”。在这里,我们将这项研究转化为生物能源作物杨树。通过将 ProSNBE:AtCCR1 表达到 CRISPR/Cas9 生成的 ccr2 杨树木中,我们旨在实现管胞特异性木质素生物合成:(i)实现生长恢复,同时保持高糖化产量;(ii)研究杨树木材中“好邻居”的存在。分析所得的 ccr2 ProSNBE:AtCCR1 杨树木表明,管胞和射线在杨树木质素形成中充当“好邻居”。如果这些细胞产生足够的木质素单体,木质素单体就会迁移到多个细胞层,从而使木质素含量恢复到野生型水平。如果木质素单体的供应有限,木质素单体就会被掺入产生它们的管胞和射线的细胞壁及其相邻细胞中,导致纤维木质素含量降低。其中一条纤维木质素含量降低的品系木质素含量降低了 18%,尽管产量损失较小,但糖化后植物基础上的糖释放增加了 71%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验