Suppr超能文献

萎缩大小轨迹建模:变量变换、预测和发病年龄估计。

Modeling of atrophy size trajectories: variable transformation, prediction and age-of-onset estimation.

机构信息

Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany.

John A. Moran Eye Center, University of Utah, Salt Lake City, USA.

出版信息

BMC Med Res Methodol. 2021 Aug 17;21(1):170. doi: 10.1186/s12874-021-01356-0.

Abstract

BACKGROUND

To model the progression of geographic atrophy (GA) in patients with age-related macular degeneration (AMD) by building a suitable statistical regression model for GA size measurements obtained from fundus autofluorescence imaging.

METHODS

Based on theoretical considerations, we develop a linear mixed-effects model for GA size progression that incorporates covariable-dependent enlargement rates as well as correlations between longitudinally collected GA size measurements. To capture nonlinear progression in a flexible way, we systematically assess Box-Cox transformations with different transformation parameters λ. Model evaluation is performed on data collected for two longitudinal, prospective multi-center cohort studies on GA size progression.

RESULTS

A transformation parameter of λ=0.45 yielded the best model fit regarding the Akaike information criterion (AIC). When hypertension and hypercholesterolemia were included as risk factors in the model, they showed an association with progression of GA size. The mean estimated age-of-onset in this model was 67.21±6.49 years.

CONCLUSIONS

We provide a comprehensive framework for modeling the course of uni- or bilateral GA size progression in longitudinal observational studies. Specifically, the model allows for age-of-onset estimation, identification of risk factors and prediction of future GA size. A square-root transformation of atrophy size is recommended before model fitting.

摘要

背景

通过建立适合于从眼底自发荧光成像中获得的年龄相关性黄斑变性(AMD)患者中地理萎缩(GA)大小测量的统计回归模型,对 GA 进展进行建模。

方法

基于理论考虑,我们开发了一种用于 GA 大小进展的线性混合效应模型,该模型包含随协变量变化的扩大率以及纵向收集的 GA 大小测量之间的相关性。为了以灵活的方式捕捉非线性进展,我们系统地评估了具有不同变换参数λ的 Box-Cox 变换。使用来自两项关于 GA 大小进展的纵向、前瞻性多中心队列研究的数据进行模型评估。

结果

当将高血压和高胆固醇血症作为模型中的风险因素时,变换参数λ=0.45 获得了关于赤池信息量准则(AIC)的最佳模型拟合。当将高血压和高胆固醇血症作为模型中的风险因素时,它们与 GA 大小的进展有关。该模型中估计的平均发病年龄为 67.21±6.49 岁。

结论

我们为在纵向观察性研究中对单侧或双侧 GA 大小进展的过程建模提供了一个全面的框架。具体而言,该模型允许进行发病年龄估计、识别风险因素和预测未来的 GA 大小。建议在拟合模型之前对萎缩大小进行平方根变换。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2770/8369742/70a1b4e8e1d7/12874_2021_1356_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验