Suppr超能文献

单核苷酸重复的突变率,而不是氧化应激,解释了. 中实验室积累的突变与自然等位基因频率谱之间的差异。

Mutability of mononucleotide repeats, not oxidative stress, explains the discrepancy between laboratory-accumulated mutations and the natural allele-frequency spectrum in .

机构信息

Department of Biology, University of Florida, Gainesville, Florida 32611, USA.

Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA.

出版信息

Genome Res. 2021 Sep;31(9):1602-1613. doi: 10.1101/gr.275372.121. Epub 2021 Aug 17.

Abstract

Important clues about natural selection can be gleaned from discrepancies between the properties of segregating genetic variants and of mutations accumulated experimentally under minimal selection, provided the mutational process is the same in the laboratory as in nature. The base-substitution spectrum differs between laboratory mutation accumulation (MA) experiments and the standing site-frequency spectrum, which has been argued to be in part owing to increased oxidative stress in the laboratory environment. Using genome sequence data from MA lines carrying a mutation (-) that increases the cellular titer of reactive oxygen species (ROS), leading to increased oxidative stress, we find the base-substitution spectrum is similar between -, its wild-type progenitor (N2), and another set of MA lines derived from a different wild strain (PB306). Conversely, the rate of short insertions is greater in -, consistent with studies in other organisms in which environmental stress increased the rate of insertion-deletion mutations. Further, the mutational properties of mononucleotide repeats in all strains are different from those of nonmononucleotide sequence, both for indels and base-substitutions, and whereas the nonmononucleotide spectra are fairly similar between MA lines and wild isolates, the mononucleotide spectra are very different, with a greater frequency of A:T → T:A transversions and an increased proportion of ±1-bp indels. The discrepancy in mutational spectra between laboratory MA experiments and natural variation is likely owing to a consistent (but unknown) effect of the laboratory environment that manifests itself via different modes of mutability and/or repair at mononucleotide loci.

摘要

重要的自然选择线索可以从分离遗传变异的特性与最小选择下积累的实验突变之间的差异中得出,前提是突变过程在实验室中和自然界中是相同的。碱基替换谱在实验室突变积累 (MA) 实验和稳定的座位频率谱之间存在差异,有人认为这部分是由于实验室环境中氧化应激增加所致。使用来自携带增加细胞活性氧 (ROS) 产生的突变 (-) 的 MA 系的基因组序列数据,导致氧化应激增加,我们发现碱基替换谱在 -、其野生型前体 (N2) 和另一组源自不同野生型菌株 (PB306) 的 MA 系之间相似。相反,在 - 中短插入的速率更大,这与其他生物体的研究一致,其中环境应激增加了插入缺失突变的速率。此外,所有菌株中单核苷酸重复的突变特性与非单核苷酸序列不同,无论是插入缺失还是碱基替换,并且非单核苷酸谱在 MA 系和野生分离株之间相当相似,而单核苷酸谱则非常不同,A:T → T:A 颠换的频率更高,±1-bp 插入缺失的比例增加。实验室 MA 实验和自然变异之间的突变谱差异可能是由于实验室环境的一致(但未知)影响,这种影响通过单核苷酸位点的不同突变率和/或修复方式表现出来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f3e/8415377/55a7a1aae593/1602f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验