Suppr超能文献

RNA 修饰如何调节抗病毒反应。

How RNA modifications regulate the antiviral response.

机构信息

Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, USA.

Department of Medicine, Duke University Medical Center, Durham, NC, USA.

出版信息

Immunol Rev. 2021 Nov;304(1):169-180. doi: 10.1111/imr.13020. Epub 2021 Aug 17.

Abstract

Induction of the antiviral innate immune response is highly regulated at the RNA level, particularly by RNA modifications. Recent discoveries have revealed how RNA modifications play key roles in cellular surveillance of nucleic acids and in controlling gene expression in response to viral infection. These modifications have emerged as being essential for a functional antiviral response and maintaining cellular homeostasis. In this review, we will highlight these and other discoveries that describe how the antiviral response is controlled by modifications to both viral and cellular RNA, focusing on how mRNA cap modifications, N6-methyladenosine, and RNA editing all contribute to coordinating an efficient response that properly controls viral infection.

摘要

抗病毒先天免疫反应的诱导在 RNA 水平受到高度调控,特别是通过 RNA 修饰。最近的发现揭示了 RNA 修饰如何在细胞对核酸的监测以及在响应病毒感染控制基因表达中发挥关键作用。这些修饰已成为功能性抗病毒反应和维持细胞内稳态所必需的。在这篇综述中,我们将强调这些以及其他描述抗病毒反应如何受病毒和细胞 RNA 修饰控制的发现,重点介绍 mRNA 帽修饰、N6-甲基腺苷和 RNA 编辑如何共同协调有效的反应,从而正确控制病毒感染。

相似文献

1
How RNA modifications regulate the antiviral response.
Immunol Rev. 2021 Nov;304(1):169-180. doi: 10.1111/imr.13020. Epub 2021 Aug 17.
2
Regulation of Viral Infection by the RNA Modification -Methyladenosine.
Annu Rev Virol. 2019 Sep 29;6(1):235-253. doi: 10.1146/annurev-virology-092818-015559. Epub 2019 Jul 5.
3
Modifying the antiviral innate immune response by selective writing, erasing, and reading of mA on viral and cellular RNA.
Cell Chem Biol. 2024 Jan 18;31(1):100-109. doi: 10.1016/j.chembiol.2023.12.004. Epub 2024 Jan 3.
4
The regulation of antiviral innate immunity through non-mA RNA modifications.
Front Immunol. 2023 Oct 17;14:1286820. doi: 10.3389/fimmu.2023.1286820. eCollection 2023.
5
Recent insights into N-methyladenosine during viral infection.
Curr Opin Genet Dev. 2024 Aug;87:102213. doi: 10.1016/j.gde.2024.102213. Epub 2024 Jun 19.
6
RNA regulatory mechanisms that control antiviral innate immunity.
Immunol Rev. 2021 Nov;304(1):77-96. doi: 10.1111/imr.13019. Epub 2021 Aug 17.
7
N6-methyladenosine modification of HIV-1 RNA suppresses type-I interferon induction in differentiated monocytic cells and primary macrophages.
PLoS Pathog. 2021 Mar 10;17(3):e1009421. doi: 10.1371/journal.ppat.1009421. eCollection 2021 Mar.
8
RNA 2-O-Methyltransferase Fibrillarin Facilitates Virus Entry Into Macrophages Through Inhibiting Type I Interferon Response.
Front Immunol. 2022 Apr 7;13:793582. doi: 10.3389/fimmu.2022.793582. eCollection 2022.
10
Regulation of antiviral innate immunity by chemical modification of viral RNA.
Wiley Interdiscip Rev RNA. 2022 Nov;13(6):e1720. doi: 10.1002/wrna.1720. Epub 2022 Feb 12.

引用本文的文献

5
mRNA nanodelivery systems: targeting strategies and administration routes.
Biomater Res. 2023 Sep 22;27(1):90. doi: 10.1186/s40824-023-00425-3.
6
The hidden RNA code: implications of the RNA epitranscriptome in the context of viral infections.
Front Genet. 2023 Aug 1;14:1245683. doi: 10.3389/fgene.2023.1245683. eCollection 2023.
7
Direct Nanopore Sequencing for the 17 RNA Modification Types in 36 Locations in the Ribosome Enables Monitoring of Stress-Dependent Changes.
ACS Chem Biol. 2023 Oct 20;18(10):2211-2223. doi: 10.1021/acschembio.3c00166. Epub 2023 Jun 22.
8
Post-transcriptional checkpoints in autoimmunity.
Nat Rev Rheumatol. 2023 Aug;19(8):486-502. doi: 10.1038/s41584-023-00980-y. Epub 2023 Jun 13.
10
Chemical Space Virtual Screening against Hard-to-Drug RNA Methyltransferases DNMT2 and NSUN6.
Int J Mol Sci. 2023 Mar 24;24(7):6109. doi: 10.3390/ijms24076109.

本文引用的文献

1
Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing.
Mol Cell. 2022 Feb 3;82(3):645-659.e9. doi: 10.1016/j.molcel.2021.12.023. Epub 2022 Jan 19.
2
Methylation of viral mRNA cap structures by PCIF1 attenuates the antiviral activity of interferon-β.
Proc Natl Acad Sci U S A. 2021 Jul 20;118(29). doi: 10.1073/pnas.2025769118.
3
Upregulation of RNA cap methyltransferase RNMT drives ribosome biogenesis during T cell activation.
Nucleic Acids Res. 2021 Jul 9;49(12):6722-6738. doi: 10.1093/nar/gkab465.
4
Modifications in an Emergency: The Role of N1-Methylpseudouridine in COVID-19 Vaccines.
ACS Cent Sci. 2021 May 26;7(5):748-756. doi: 10.1021/acscentsci.1c00197. Epub 2021 Apr 6.
5
Mining for METTL3 inhibitors to suppress cancer.
Nat Struct Mol Biol. 2021 Jun;28(6):460-462. doi: 10.1038/s41594-021-00606-5.
6
Small RNAs are modified with N-glycans and displayed on the surface of living cells.
Cell. 2021 Jun 10;184(12):3109-3124.e22. doi: 10.1016/j.cell.2021.04.023. Epub 2021 May 17.
8
METTL3 regulates viral m6A RNA modification and host cell innate immune responses during SARS-CoV-2 infection.
Cell Rep. 2021 May 11;35(6):109091. doi: 10.1016/j.celrep.2021.109091. Epub 2021 May 3.
10
Future considerations for the mRNA-lipid nanoparticle vaccine platform.
Curr Opin Virol. 2021 Jun;48:65-72. doi: 10.1016/j.coviro.2021.03.008. Epub 2021 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验