Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA.
Department of Pediatrics, Medical School, University of Michigan, Ann Arbor, Michigan, USA.
Stat Med. 2021 Sep 20;40(21):4609-4628. doi: 10.1002/sim.9083. Epub 2021 Jun 2.
Randomized clinical trials with outcome measured longitudinally are frequently analyzed using either random effect models or generalized estimating equations. Both approaches assume that the dropout mechanism is missing at random (MAR) or missing completely at random (MCAR). We propose a Bayesian pattern-mixture model to incorporate missingness mechanisms that might be missing not at random (MNAR), where the distribution of the outcome measure at the follow-up time , conditional on the prior history, differs across the patterns of missing data. We then perform sensitivity analysis on estimates of the parameters of interest. The sensitivity parameters relate the distribution of the outcome of interest between subjects from a missing-data pattern at time with that of the observed subjects at time . The large number of the sensitivity parameters is reduced by treating them as random with a prior distribution having some pre-specified mean and variance, which are varied to explore the sensitivity of inferences. The missing at random (MAR) mechanism is a special case of the proposed model, allowing a sensitivity analysis of deviations from MAR. The proposed approach is applied to data from the Trial of Preventing Hypertension.
随机临床试验中,具有纵向结局测量的研究通常采用随机效应模型或广义估计方程进行分析。这两种方法都假设失访机制是随机缺失(MAR)或完全随机缺失(MCAR)。我们提出了一种贝叶斯模式混合模型,以纳入可能是非随机缺失(MNAR)的缺失机制,其中随访时间 的结局测量的分布,根据先验历史,在缺失数据的模式之间有所不同。然后,我们对感兴趣参数的估计值进行敏感性分析。敏感性参数将缺失数据模式下的时间 的感兴趣结局与时间 的观察到的受试者之间的结局分布联系起来。通过将敏感性参数视为随机的,具有先验分布的某些预设均值和方差,可以减少大量的敏感性参数,然后对这些均值和方差进行调整以探索推断的敏感性。随机缺失(MAR)机制是所提出模型的特例,允许对偏离 MAR 的情况进行敏感性分析。所提出的方法应用于预防高血压试验的数据。