Suppr超能文献

具有信息性删失的生存数据的贝叶斯模型。

A Bayesian model for time-to-event data with informative censoring.

机构信息

Department of Biostatistics, Center for Human Growth and Development, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Biostatistics. 2012 Apr;13(2):341-54. doi: 10.1093/biostatistics/kxr048. Epub 2012 Jan 4.

Abstract

Randomized trials with dropouts or censored data and discrete time-to-event type outcomes are frequently analyzed using the Kaplan-Meier or product limit (PL) estimation method. However, the PL method assumes that the censoring mechanism is noninformative and when this assumption is violated, the inferences may not be valid. We propose an expanded PL method using a Bayesian framework to incorporate informative censoring mechanism and perform sensitivity analysis on estimates of the cumulative incidence curves. The expanded method uses a model, which can be viewed as a pattern mixture model, where odds for having an event during the follow-up interval $$({t}{k-1},{t}{k}]$$, conditional on being at risk at $${t}_{k-1}$$, differ across the patterns of missing data. The sensitivity parameters relate the odds of an event, between subjects from a missing-data pattern with the observed subjects for each interval. The large number of the sensitivity parameters is reduced by considering them as random and assumed to follow a log-normal distribution with prespecified mean and variance. Then we vary the mean and variance to explore sensitivity of inferences. The missing at random (MAR) mechanism is a special case of the expanded model, thus allowing exploration of the sensitivity to inferences as departures from the inferences under the MAR assumption. The proposed approach is applied to data from the TRial Of Preventing HYpertension.

摘要

随机试验中存在失访或删失数据以及离散时间事件类型结局的情况,通常使用 Kaplan-Meier 或乘积限(PL)估计方法进行分析。然而,PL 方法假设删失机制是非信息性的,当这种假设被违反时,推断可能是无效的。我们提出了一种扩展的 PL 方法,该方法使用贝叶斯框架来纳入信息性删失机制,并对累积发生率曲线的估计进行敏感性分析。扩展方法使用的模型可以看作是一种模式混合模型,其中在随访间隔$$({t}{k-1},{t}{k}]$$期间发生事件的概率,条件是在 $${t}_{k-1}$$ 时刻处于风险中,因数据缺失模式而异。敏感性参数将缺失数据模式中每个间隔的事件发生的可能性与观察到的对象进行了比较。通过将敏感性参数视为随机的,并假设它们遵循指定均值和方差的对数正态分布,可以减少大量敏感性参数。然后,我们改变均值和方差以探索推断的敏感性。随机缺失(MAR)机制是扩展模型的一个特例,因此允许探索在 MAR 假设下推断的敏感性。该方法应用于预防高血压试验的数据。

相似文献

1
A Bayesian model for time-to-event data with informative censoring.具有信息性删失的生存数据的贝叶斯模型。
Biostatistics. 2012 Apr;13(2):341-54. doi: 10.1093/biostatistics/kxr048. Epub 2012 Jan 4.

引用本文的文献

5
Reference-based sensitivity analysis for time-to-event data.基于参考的生存时间数据敏感性分析。
Pharm Stat. 2019 Nov;18(6):645-658. doi: 10.1002/pst.1954. Epub 2019 Jul 15.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验