Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States.
Nano Lett. 2021 Sep 8;21(17):7332-7338. doi: 10.1021/acs.nanolett.1c02524. Epub 2021 Aug 18.
Step edges are an important and prevalent topological feature that influence catalytic, electronic, vibrational, and structural properties arising from modulation of atomic-scale force fields due to edge-atom relaxation. Direct probing of ultrafast atomic-to-nanoscale lattice dynamics at individual steps poses a particularly significant challenge owing to demanding spatiotemporal resolution requirements. Here, we achieve such resolutions with femtosecond 4D ultrafast electron microscopy and directly image nanometer-variant softening of photoexcited phonons at individual surface steps. We find large degrees of softening precisely at the step position, with a thickness-dependent, strain-induced frequency modulation extending tens of nanometers laterally from the atomic-scale discontinuity. The effect originates from anisotropic bond dilation and photoinduced incoherent atomic displacements delineated by abrupt molecular-layer cessation. The magnitude and spatiotemporal extent of softening is quantitatively described with a finite-element transient-deformation model. The high spatiotemporal resolutions demonstrated here enable uncovering of new insights into atomic-scale structure-function relationships of highly defect-sensitive, functional materials.
台阶边缘是一种重要且普遍的拓扑特征,由于边缘原子弛豫导致原子尺度力场的调制,从而影响催化、电子、振动和结构性质。由于对时空分辨率要求苛刻,直接探测单个台阶处超快原子到纳米级晶格动力学提出了一个特别重大的挑战。在这里,我们使用飞秒 4D 超快电子显微镜实现了这种分辨率,并直接成像了单个表面台阶处光激发声子的纳米级软化。我们发现,在台阶位置上确实存在很大程度的软化,在几十纳米的范围内存在由应变诱导的、与厚度相关的频率调制,从原子尺度不连续性开始。这种效应源于各向异性键的膨胀和由突然的分子层停止界定的光诱导非相干原子位移。软化的幅度和时空范围可以通过有限元瞬态变形模型进行定量描述。这里展示的高时空分辨率使我们能够深入了解对缺陷敏感的功能材料的原子尺度结构-功能关系。