Bach N, Feist A, Möller M, Ropers C, Schäfer S
Institute of Physics, University of Oldenburg, 26129 Oldenburg, Germany.
Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.
Struct Dyn. 2022 Jun 3;9(3):034301. doi: 10.1063/4.0000144. eCollection 2022 May.
Optically excited nanostructures provide a versatile platform for the generation of confined nanophononic fields with potential (non-)linear interactions between different degrees of freedom. Control of resonance frequencies and the selective excitation of acoustic modes still remains challenging due to the interplay of nanoscale geometries and interfacial coupling mechanisms. Here, we demonstrate that a semiconductor membrane patterned with a platinum stripe acts as a tailored source for high-frequency strain waves generating a multi-modal distortion wave propagating through the membrane. To locally monitor the ultrafast structural dynamics at a specific distance from the deposited metal stripe, we employ ultrafast convergent beam electron diffraction in a laser-pump/electron-probe scheme. Experimentally observed acoustic deformations are reproduced by numerical simulations in a continuous medium model, revealing a spatiotemporal evolution of the lattice dynamics dominated by local rotations with minor strain and shear contributions.
光激发纳米结构为产生受限的纳米声子场提供了一个通用平台,不同自由度之间可能存在(非)线性相互作用。由于纳米尺度几何结构和界面耦合机制的相互作用,共振频率的控制和声模的选择性激发仍然具有挑战性。在这里,我们证明了一种用铂条图案化的半导体膜可作为高频应变波的定制源,产生通过该膜传播的多模态畸变波。为了在距沉积金属条特定距离处局部监测超快结构动力学,我们在激光泵浦/电子探针方案中采用超快会聚束电子衍射。通过连续介质模型中的数值模拟再现了实验观察到的声学变形,揭示了晶格动力学的时空演化,其主要由局部旋转主导,应变和剪切贡献较小。