Willis Simon A, Flannigan David J
Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA.
Chemphyschem. 2025 Mar 3;26(5):e202401032. doi: 10.1002/cphc.202401032. Epub 2025 Jan 28.
Broader adoption of 4D ultrafast electron microscopy (UEM) for the study of chemical, materials, and quantum systems is being driven by development of new instruments as well as continuous improvement and characterization of existing technologies. Perhaps owing to the still-high barrier to entry, the full range of capabilities of laser-driven 4D UEM instruments has yet to be established, particularly when operated at extremely low beam currents (~fA). Accordingly, with an eye on beam stability, we have conducted particle tracing simulations of unconventional off-axis photoemission geometries in a UEM equipped with a thermionic-emission gun. Specifically, we have explored the impact of experimentally adjustable parameters on the time-of-flight (TOF), the collection efficiency (CE), and the temporal width of ultrashort photoelectron packets. The adjustable parameters include the Wehnelt aperture diameter (D), the cathode set-back position (Z), and the position of the femtosecond laser on the Wehnelt aperture surface relative to the optic axis (R). Notable findings include significant sensitivity of TOF to D and Z, as well as non-intuitive responses of CE and temporal width to varying R. As a means to improve accessibility, practical implications and recommendations are emphasized wherever possible.
新仪器的开发以及现有技术的持续改进和特性表征,推动了4D超快电子显微镜(UEM)在化学、材料和量子系统研究中的更广泛应用。或许由于进入门槛仍然较高,激光驱动的4D UEM仪器的全部功能尚未确立,尤其是在极低束流(~fA)下运行时。因此,着眼于束流稳定性,我们在配备热离子发射枪的UEM中对非常规离轴光发射几何结构进行了粒子追踪模拟。具体而言,我们研究了实验可调参数对飞行时间(TOF)、收集效率(CE)以及超短光电子包时间宽度的影响。可调参数包括韦内尔特孔径直径(D)、阴极后退位置(Z)以及飞秒激光在韦内尔特孔径表面相对于光轴的位置(R)。显著发现包括TOF对D和Z的显著敏感性,以及CE和时间宽度对变化的R的非直观响应。作为提高可及性的一种手段,我们尽可能强调实际意义和建议。