Suppr超能文献

一项关于新型人工智能 CAD EYE 在临床实践中对结直肠息肉病变识别和诊断功能的分析。

An analysis about the function of a new artificial intelligence, CAD EYE with the lesion recognition and diagnosis for colorectal polyps in clinical practice.

机构信息

Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.

Department of Surgical Pathology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.

出版信息

Int J Colorectal Dis. 2021 Oct;36(10):2237-2245. doi: 10.1007/s00384-021-04006-5. Epub 2021 Aug 18.

Abstract

OBJECTIVES

Recently, CAD EYE (Fujifilm, Tokyo, Japan), an artificial intelligence for the lesion recognition (CADe) and the optical diagnosis (CADx) of colorectal polyps, was released. We evaluated the function of CADe and CADx of CAD EYE.

METHODS

In this single-center retrospective study, we examined consecutive polyps ≤ 10 mm detected from March to April 2021 to determine whether CAD EYE could recognize them live with both normal- and high-speed observation using white-light imaging (WLI) and linked-color imaging (LCI). We then examined whether the polyps were neoplastic or hyperplastic live with magnified or non-magnified blue-laser imaging (BLI-LASER) or blue-light imaging (BLI-LED) under CAD EYE, comparing the retrospective evaluations with 5 experts and 5 trainees using still images. All polyps were histopathologically examined.

RESULTS

We analyzed 100 polyps (mean size 3.9 ± 2.6 mm; 55 neoplastic and 45 hyperplastic lesions) in 25 patients. Regarding CADe, the respective detection rates of CAD EYE with normal- and high-speed observation were 85.0% and 67.0% for WLI (p = 0.002) and 89.0% and 75.0% for LCI (p = 0.009). Regarding CADx for differentiating neoplastic and hyperplastic lesions, the diagnostic accuracy values of CAD EYE with non-magnified and magnified BLI-LASER/LED were 88.8% and 87.8%. Regarding magnified BLI-LASER/LED, the diagnostic accuracy value of CAD EYE was not significantly different from that of experts (92.0%, p = 0.17), but that of trainees (79.0%, p = 0.04). We also found no significant differences in CADe or CADx between LED (53 lesions) and LASER (47 lesions).

CONCLUSIONS

CAD EYE was a helpful tool for CADe and CADx in clinical practice.

摘要

目的

最近,一款用于结直肠息肉病变识别(CADe)和光学诊断(CADx)的人工智能 CAD EYE(富士胶片,东京,日本)问世。我们评估了 CAD EYE 的 CADe 和 CADx 功能。

方法

在这项单中心回顾性研究中,我们检查了 2021 年 3 月至 4 月连续检测到的≤10mm 的息肉,以确定 CAD EYE 是否可以使用白光成像(WLI)和链接色成像(LCI)进行实时观察,分别对正常和高速观察,识别这些息肉。然后,我们使用 CAD EYE 下的放大或非放大蓝激光成像(BLI-LASER)或蓝光成像(BLI-LED)检查这些息肉是否为肿瘤性或增生性息肉,并将实时评估与 5 位专家和 5 位学员使用静态图像的评估结果进行比较。所有息肉均经组织病理学检查。

结果

我们分析了 25 名患者的 100 个息肉(平均大小 3.9±2.6mm;55 个肿瘤性和 45 个增生性病变)。关于 CADe,CAD EYE 在 WLI 下正常和高速观察的检测率分别为 85.0%和 67.0%(p=0.002),在 LCI 下分别为 89.0%和 75.0%(p=0.009)。关于 CADx 用于区分肿瘤性和增生性病变,CAD EYE 在非放大和放大 BLI-LASER/LED 下的诊断准确率分别为 88.8%和 87.8%。在放大 BLI-LASER/LED 下,CAD EYE 的诊断准确率与专家(92.0%,p=0.17)无显著差异,但与学员(79.0%,p=0.04)有显著差异。我们还发现,在 LED(53 个病变)和 LASER(47 个病变)之间,CADe 或 CADx 没有显著差异。

结论

CAD EYE 是一种有助于 CADe 和 CADx 在临床实践中的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验