Suppr超能文献

人工智能评估:结直肠息肉的计算机辅助检测

Evaluation of Artificial Intelligence: Computer-aided Detection of Colorectal Polyps.

作者信息

Hiratsuka Yuya, Hisabe Takashi, Ohtsu Kensei, Yasaka Tatsuhisa, Takeda Kazuhiro, Miyaoka Masaki, Ono Yoichiro, Kanemitsu Takao, Imamura Kentaro, Takeda Teruyuki, Nimura Satoshi, Yao Kenshi

机构信息

Department of Endoscopy, Fukuoka University Chikushi Hospital, Chikushino, Japan.

Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan.

出版信息

J Anus Rectum Colon. 2025 Jan 25;9(1):79-87. doi: 10.23922/jarc.2024-057. eCollection 2025.

Abstract

OBJECTIVES

Colonoscopy is the gold standard for screening cancer and precancerous lesions in the large intestine. Recently, remarkable advances in artificial intelligence (AI) have led to the development of various computer-aided detection (CADe) systems for colonoscopy. This study aimed to evaluate the usefulness of AI for colonoscopy using CAD-EYE (Fujifilm, Tokyo, Japan) to calculate the adenoma miss rate (AMR).

METHODS

This randomized, open-label, single-center, tandem study was conducted at Fukuoka University Chikushi Hospital from February 2022 to November 2022. Patients were randomly assigned to the CADe or non-CADe group. Immediately after the completion of the first endoscopy by an endoscopist, a new endoscopist was assigned to perform the second endoscopy. As a result, different endoscopists performed the examinations in a tandem fashion. A missed lesion was defined as a newly detected colorectal polyp by the second endoscopy. Finally, the AMR was compared between the two groups.

RESULTS

The study population comprised 48 patients in the CADe group and 46 patients in the non-CADe group. The AMR was 17.4% in the CADe group and 30.3% in the non-CADe group. Therefore, the AMR in the CADe group was statistically significantly lower than that in the non-CADe group (P=0.009).

CONCLUSIONS

The application of CAD-EYE to colonoscopy reduced the AMR. Overall, CAD-EYE might be useful for reducing missed colorectal adenomas.

摘要

目的

结肠镜检查是筛查大肠癌症及癌前病变的金标准。近年来,人工智能(AI)取得了显著进展,催生了各种用于结肠镜检查的计算机辅助检测(CADe)系统。本研究旨在使用CAD-EYE(富士胶片公司,日本东京)评估AI在结肠镜检查中的效用,以计算腺瘤漏诊率(AMR)。

方法

本随机、开放标签、单中心、串联研究于2022年2月至2022年11月在福冈大学筑紫医院进行。患者被随机分配至CADe组或非CADe组。在一名内镜医师完成首次内镜检查后,立即安排一名新的内镜医师进行第二次内镜检查。因此,不同的内镜医师以串联方式进行检查。漏诊病变定义为第二次内镜检查新发现的大肠息肉。最后,比较两组的AMR。

结果

研究人群包括CADe组的48例患者和非CADe组的46例患者。CADe组的AMR为17.4%,非CADe组为30.3%。因此,CADe组的AMR在统计学上显著低于非CADe组(P=0.009)。

结论

CAD-EYE应用于结肠镜检查可降低AMR。总体而言,CAD-EYE可能有助于减少大肠腺瘤的漏诊。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd4f/11772790/fd8b47a61bd9/2432-3853-9-0079-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验