Bussy Simon, Alaya Mokhtar Z, Jannot Anne-Sophie, Guilloux Agathe
LPSM, UMR 8001, CNRS, Sorbonne University, Paris, France.
LOPF, Califrais' Machine Learning Lab, Paris, France.
Biometrics. 2022 Dec;78(4):1414-1426. doi: 10.1111/biom.13547. Epub 2021 Sep 7.
We introduce binacox, a prognostic method to deal with the problem of detecting multiple cut-points per feature in a multivariate setting where a large number of continuous features are available. The method is based on the Cox model and combines one-hot encoding with the binarsity penalty, which uses total-variation regularization together with an extra linear constraint, and enables feature selection. Original nonasymptotic oracle inequalities for prediction (in terms of Kullback-Leibler divergence) and estimation with a fast rate of convergence are established. The statistical performance of the method is examined in an extensive Monte Carlo simulation study, and then illustrated on three publicly available genetic cancer data sets. On these high-dimensional data sets, our proposed method outperforms state-of-the-art survival models regarding risk prediction in terms of the C-index, with a computing time orders of magnitude faster. In addition, it provides powerful interpretability from a clinical perspective by automatically pinpointing significant cut-points in relevant variables.
我们引入了Binacox,这是一种预后方法,用于处理在多变量环境中每个特征检测多个切点的问题,其中有大量连续特征可用。该方法基于Cox模型,并将独热编码与二元性惩罚相结合,后者使用总变差正则化以及一个额外的线性约束,并能够进行特征选择。建立了用于预测(根据库尔贝克-莱布勒散度)和具有快速收敛速度的估计的原始非渐近神谕不等式。在广泛的蒙特卡罗模拟研究中检验了该方法的统计性能,然后在三个公开可用的遗传癌症数据集上进行了说明。在这些高维数据集上,我们提出的方法在C指数方面的风险预测优于现有生存模型,计算时间快几个数量级。此外,它通过自动确定相关变量中的显著切点,从临床角度提供了强大的可解释性。