Suppr超能文献

一种新方法,用于确定与生存数据中危害比呈 U 形关系的连续预测因子的两个最佳切点:模拟和应用。

A novel approach to determine two optimal cut-points of a continuous predictor with a U-shaped relationship to hazard ratio in survival data: simulation and application.

机构信息

Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.

National Engineering Laboratory for Internet Medical Systems and Applications, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.

出版信息

BMC Med Res Methodol. 2019 May 9;19(1):96. doi: 10.1186/s12874-019-0738-4.

Abstract

BACKGROUND

In clinical and epidemiological researches, continuous predictors are often discretized into categorical variables for classification of patients. When the relationship between a continuous predictor and log relative hazards is U-shaped in survival data, there is a lack of a satisfying solution to find optimal cut-points to discretize the continuous predictor. In this study, we propose a novel approach named optimal equal-HR method to discretize a continuous variable that has a U-shaped relationship with log relative hazards in survival data.

METHODS

The main idea of the optimal equal-HR method is to find two optimal cut-points that have equal log relative hazard values and result in Cox models with minimum AIC value. An R package 'CutpointsOEHR' has been developed for easy implementation of the optimal equal-HR method. A Monte Carlo simulation study was carried out to investigate the performance of the optimal equal-HR method. In the simulation process, different censoring proportions, baseline hazard functions and asymmetry levels of U-shaped relationships were chosen. To compare the optimal equal-HR method with other common approaches, the predictive performance of Cox models with variables discretized by different cut-points was assessed.

RESULTS

Simulation results showed that in asymmetric U-shape scenarios the optimal equal-HR method had better performance than the median split method, the upper and lower quantiles method, and the minimum p-value method regarding discrimination ability and overall performance of Cox models. The optimal equal-HR method was applied to a real dataset of small cell lung cancer. The real data example demonstrated that the optimal equal-HR method could provide clinical meaningful cut-points and had good predictive performance in Cox models.

CONCLUSIONS

In general, the optimal equal-HR method is recommended to discretize a continuous predictor with right-censored outcomes if the predictor has an asymmetric U-shaped relationship with log relative hazards based on Cox regression models.

摘要

背景

在临床和流行病学研究中,连续预测因子通常被离散化为分类变量,以对患者进行分类。当生存数据中连续预测因子与对数相对危险度之间的关系呈 U 形时,缺乏令人满意的解决方案来找到最优的分界点来离散连续预测因子。在这项研究中,我们提出了一种名为最优等 HR 方法的新方法,用于离散与生存数据中对数相对危险度呈 U 形关系的连续变量。

方法

最优等 HR 方法的主要思想是找到两个最优分界点,它们具有相等的对数相对危险度值,并使 Cox 模型具有最小 AIC 值。已经开发了一个名为“CutpointsOEHR”的 R 包,用于轻松实现最优等 HR 方法。进行了一项蒙特卡罗模拟研究,以研究最优等 HR 方法的性能。在模拟过程中,选择了不同的截尾比例、基线危险函数和 U 形关系的不对称水平。为了将最优等 HR 方法与其他常用方法进行比较,评估了使用不同分界点离散变量的 Cox 模型的预测性能。

结果

模拟结果表明,在不对称 U 形情况下,最优等 HR 方法在区分能力和 Cox 模型的整体性能方面优于中位数分割法、上下四分位数法和最小 P 值法。最优等 HR 方法应用于小细胞肺癌的真实数据集。真实数据示例表明,最优等 HR 方法可以提供有临床意义的分界点,并在 Cox 模型中具有良好的预测性能。

结论

一般来说,如果基于 Cox 回归模型,预测因子与对数相对危险度之间存在不对称 U 形关系,建议使用最优等 HR 方法来离散具有右截断结果的连续预测因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d014/6507062/79d80e54831e/12874_2019_738_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验