Suppr超能文献

基于影像组学的镓- DOTATATE正电子发射断层扫描和计算机断层扫描图像纹理分析作为接受镥- DOTATATE治疗的成人神经内分泌癌的预后生物标志物

Radiomics-Based Texture Analysis of Ga-DOTATATE Positron Emission Tomography and Computed Tomography Images as a Prognostic Biomarker in Adults With Neuroendocrine Cancers Treated With Lu-DOTATATE.

作者信息

Atkinson Charlotte, Ganeshan Balaji, Endozo Raymond, Wan Simon, Aldridge Matthew D, Groves Ashley M, Bomanji Jamshed B, Gaze Mark N

机构信息

Departments of Oncology and Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, United Kingdom.

Institute of Nuclear Medicine, University College London, London, United Kingdom.

出版信息

Front Oncol. 2021 Aug 2;11:686235. doi: 10.3389/fonc.2021.686235. eCollection 2021.

Abstract

PURPOSE

Neuroendocrine tumors (NET) are rare cancers with variable behavior. A better understanding of prognosis would aid individualized management. The aim of this hypothesis-generating pilot study was to investigate the prognostic potential of tumor heterogeneity and tracer avidity in NET using texture analysis (TA) of Ga-DOTATATE positron emission tomography (PET) and non-enhanced computed tomography (CT) performed at baseline in patients treated with Lu-DOTATATE. It aims to justify a larger-scale study to evaluate its clinical value.

METHODS

The pretherapy Ga-DOTATATE PET-CT scans of 44 patients with metastatic NET (carcinoid, pancreatic, thyroid, head and neck, catecholamine-secreting, and unknown primary NET) treated with Lu-DOTATATE were analyzed retrospectively using commercially available texture analysis research software. Image filtration extracted and enhanced objects of different sizes (fine, medium, coarse), then quantified heterogeneity by statistical and histogram-based parameters (mean intensity, standard deviation, entropy, mean of positive pixels, skewness, and kurtosis). Regions of interest were manually drawn around up to five of the most Ga-DOTATATE avid lesions for each patient. Gallium uptake on PET was quantified as SUV and SUV. Associations between imaging and clinical markers with progression-free (PFS) and overall survival (OS) were assessed using univariate Kaplan-Meier analysis. Independence of the significant univariate markers of survival was tested using multivariate Cox regression analysis.

RESULTS

Measures of heterogeneity (higher kurtosis, higher entropy, and lower skewness) on coarse-texture scale CT and unfiltered PET images predicted shorter PFS (CT coarse kurtosis: p=0.05, PET entropy: p=0.01, PET skewness: p=0.03) and shorter OS (CT coarse kurtosis: p=0.05, PET entropy: p=0.01, PET skewness p=0.02). Conventional PET parameters such as SUV and SUV showed trends towards predicting outcome but were not statistically significant. Multivariate analysis identified that CT-TA (coarse kurtosis: HR=2.57, 95% CI=1.22-5.38, p=0.013) independently predicted PFS, and PET-TA (unfiltered skewness: HR=9.05, 95% CI=1.19-68.91, p=0.033) independently predicted OS.

CONCLUSION

These preliminary data generate a hypothesis that radiomic analysis of neuroendocrine cancer on Ga-DOTATATE PET-CT may be of prognostic value and a valuable addition to the assessment of patients.

摘要

目的

神经内分泌肿瘤(NET)是一种行为各异的罕见癌症。更好地了解其预后将有助于个体化管理。本探索性初步研究的目的是通过对接受镥[¹⁷⁷Lu] DOTATATE治疗患者基线时进行的镓[⁶⁸Ga] DOTATATE正电子发射断层扫描(PET)和非增强计算机断层扫描(CT)进行纹理分析(TA),研究NET中肿瘤异质性和示踪剂摄取的预后潜力。其目的是为一项评估其临床价值的大规模研究提供依据。

方法

回顾性分析44例接受镥[¹⁷⁷Lu] DOTATATE治疗的转移性NET(类癌、胰腺、甲状腺、头颈部、分泌儿茶酚胺的肿瘤以及原发灶不明的NET)患者的治疗前镓[⁶⁸Ga] DOTATATE PET-CT扫描图像,使用商用纹理分析研究软件进行分析。图像滤波提取并增强不同大小(精细、中等、粗糙)的物体,然后通过基于统计和直方图的参数(平均强度、标准差、熵、阳性像素均值、偏度和峰度)量化异质性。为每位患者在最多五个镓[⁶⁸Ga] DOTATATE摄取最高的病灶周围手动绘制感兴趣区域。PET上的镓摄取量以SUV和SUVmax进行量化。使用单变量Kaplan-Meier分析评估成像和临床标志物与无进展生存期(PFS)和总生存期(OS)之间的关联。使用多变量Cox回归分析检验生存的显著单变量标志物的独立性。

结果

在粗糙纹理尺度CT和未滤波PET图像上的异质性测量值(较高的峰度、较高的熵和较低的偏度)预测较短的PFS(CT粗糙峰度:p=0.05,PET熵:p=0.01,PET偏度:p=0.03)和较短的OS(CT粗糙峰度:p=0.05,PET熵:p=0.01,PET偏度p=0.02)。传统PET参数如SUV和SUVmax显示出预测预后的趋势,但无统计学意义。多变量分析确定CT-TA(粗糙峰度:HR=2.57,95%CI=1.22-5.38,p=0.013)独立预测PFS,PET-TA(未滤波偏度:HR=9.05,95%CI=1.19-68.91,p=0.033)独立预测OS。

结论

这些初步数据提出了一个假设,即对镓[⁶⁸Ga] DOTATATE PET-CT上的神经内分泌癌进行放射组学分析可能具有预后价值,是对患者评估的有价值补充。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/981b/8366561/b2ff3a82d056/fonc-11-686235-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验