Suppr超能文献

利用时间序列聚类对大量非糖尿病COVID-19患者进行数据驱动的血糖模式识别。

Data-driven identification of temporal glucose patterns in a large cohort of nondiabetic patients with COVID-19 using time-series clustering.

作者信息

Mistry Sejal, Gouripeddi Ramkiran, Facelli Julio C, Facelli Julio C

机构信息

Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, USA.

出版信息

JAMIA Open. 2021 Jul 15;4(3):ooab063. doi: 10.1093/jamiaopen/ooab063. eCollection 2021 Jul.

Abstract

OBJECTIVE

Hyperglycemia has emerged as an important clinical manifestation of coronavirus disease 2019 (COVID-19) in diabetic and nondiabetic patients. Whether these glycemic changes are specific to a subgroup of patients and persist following COVID-19 resolution remains to be elucidated. This work aimed to characterize longitudinal random blood glucose in a large cohort of nondiabetic patients diagnosed with COVID-19.

MATERIALS AND METHODS

De-identified electronic medical records of 7502 patients diagnosed with COVID-19 without prior diagnosis of diabetes between January 1, 2020, and November 18, 2020, were accessed through the TriNetX Research Network. Glucose measurements, diagnostic codes, medication codes, laboratory values, vital signs, and demographics were extracted before, during, and after COVID-19 diagnosis. Unsupervised time-series clustering algorithms were trained to identify distinct clusters of glucose trajectories. Cluster associations were tested for demographic variables, COVID-19 severity, glucose-altering medications, glucose values, and new-onset diabetes diagnoses.

RESULTS

Time-series clustering identified a low-complexity model with 3 clusters and a high-complexity model with 19 clusters as the best-performing models. In both models, cluster membership differed significantly by death status, COVID-19 severity, and glucose levels. Clusters membership in the 19 cluster model also differed significantly by age, sex, and new-onset diabetes mellitus.

DISCUSSION AND CONCLUSION

This work identified distinct longitudinal blood glucose changes associated with subclinical glucose dysfunction in the low-complexity model and increased new-onset diabetes incidence in the high-complexity model. Together, these findings highlight the utility of data-driven techniques to elucidate longitudinal glycemic dysfunction in patients with COVID-19 and provide clinical evidence for further evaluation of the role of COVID-19 in diabetes pathogenesis.

摘要

目的

高血糖已成为2019冠状病毒病(COVID-19)在糖尿病和非糖尿病患者中的一种重要临床表现。这些血糖变化是否特定于某一亚组患者,以及在COVID-19痊愈后是否持续存在,仍有待阐明。这项研究旨在描述一大群确诊COVID-19的非糖尿病患者的纵向随机血糖特征。

材料与方法

通过TriNetX研究网络获取了2020年1月1日至2020年11月18日期间7502例确诊COVID-19且既往无糖尿病诊断的患者的去识别化电子病历。提取了COVID-19诊断之前、期间和之后的血糖测量值、诊断代码、用药代码、实验室检查值、生命体征和人口统计学数据。使用无监督时间序列聚类算法来识别血糖轨迹的不同聚类。对聚类与人口统计学变量、COVID-19严重程度、影响血糖的药物、血糖值和新发糖尿病诊断之间的关联进行了测试。

结果

时间序列聚类确定了一个具有3个聚类的低复杂度模型和一个具有19个聚类的高复杂度模型为表现最佳的模型。在这两个模型中,聚类成员在死亡状态、COVID-19严重程度和血糖水平方面存在显著差异。在19聚类模型中,聚类成员在年龄、性别和新发糖尿病方面也存在显著差异。

讨论与结论

这项研究在低复杂度模型中识别出了与亚临床血糖功能障碍相关的不同纵向血糖变化,在高复杂度模型中识别出了新发糖尿病发病率增加的情况。总之,这些发现凸显了数据驱动技术在阐明COVID-19患者纵向血糖功能障碍方面的作用,并为进一步评估COVID-19在糖尿病发病机制中的作用提供了临床证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4cc/8364667/be00c868be84/ooab063f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验