Department of Electronic Engineering, Fudan University, Shanghai, China.
Department of Gastroenterology, Changhai Hospital, Shanghai, China.
Med Phys. 2021 Nov;48(11):7199-7214. doi: 10.1002/mp.15172. Epub 2021 Aug 30.
Accurate quantification of gastrointestinal stromal tumors' (GISTs) risk stratification on multicenter endoscopic ultrasound (EUS) images plays a pivotal role in aiding the surgical decision-making process. This study focuses on automatically classifying higher-risk and lower-risk GISTs in the presence of a multicenter setting and limited data.
In this study, we retrospectively enrolled 914 patients with GISTs (1824 EUS images in total) from 18 hospitals in China. We propose a triple normalization-based deep learning framework with ultrasound-specific pretraining and meta attention, namely, TN-USMA model. The triple normalization module consists of the intensity normalization, size normalization, and spatial resolution normalization. First, the image intensity is standardized and same-size regions of interest (ROIs) and same-resolution tumor masks are generated in parallel. Then, the transfer learning strategy is utilized to mitigate the data scarcity problem. The same-size ROIs are fed into a deep architecture with ultrasound-specific pretrained weights, which are obtained from self-supervised learning using a large volume of unlabeled ultrasound images. Meanwhile, tumors' size features are calculated from the same-resolution masks individually. Afterward, the size features together with two demographic features are integrated to the model before the final classification layer using a meta attention mechanism to further enhance feature representations. The diagnostic performance of the proposed method was compared with one radiomics-based method and two state-of-the-art deep learning methods. Four evaluation metrics, namely, the accuracy, the area under the receiver operator curve, the sensitivity, and the specificity were used to evaluate the model performance.
The proposed TN-USMA model achieves an overall accuracy of 0.834 (95% confidence interval [CI]: 0.772, 0.885), an area under the receiver operator curve of 0.881 (95% CI: 0.825, 0.924), a sensitivity of 0.844 (95% CI: 0.672, 0.947), and a specificity of 0.832 (95% CI: 0.762, 0.888). The AUC significantly outperforms other two deep learning approaches (p < 0.05, DeLong et al). Moreover, the performance is stable under different variations of multicenter dataset partitions.
The proposed TN-USMA model can successfully differentiate higher-risk GISTs from lower-risk ones. It is accurate, robust, generalizable, and efficient for potential clinical applications.
在多中心内镜超声(EUS)图像中准确量化胃肠道间质瘤(GISTs)的风险分层,对辅助手术决策过程至关重要。本研究旨在专注于在多中心环境和有限数据的情况下自动对高风险和低风险 GIST 进行分类。
本研究回顾性纳入了来自中国 18 家医院的 914 名 GIST 患者(共 1824 张 EUS 图像)。我们提出了一种基于三重归一化的深度学习框架,具有超声特异性预训练和元注意力,即 TN-USMA 模型。三重归一化模块由强度归一化、大小归一化和空间分辨率归一化组成。首先,对图像强度进行标准化,并并行生成相同大小的感兴趣区域(ROI)和相同分辨率的肿瘤掩模。然后,利用迁移学习策略来减轻数据稀缺问题。将相同大小的 ROI 输入到具有超声特异性预训练权重的深度架构中,这些权重是使用大量未标记的超声图像通过自我监督学习获得的。同时,从相同分辨率的掩模中单独计算肿瘤的大小特征。之后,使用元注意力机制将大小特征与两个人口统计学特征一起集成到模型的最后分类层之前,以进一步增强特征表示。将所提出的方法与一种基于放射组学的方法和两种最先进的深度学习方法进行了比较。使用四个评估指标,即准确性、接收者操作特征曲线下的面积、敏感性和特异性来评估模型性能。
所提出的 TN-USMA 模型的总体准确率为 0.834(95%置信区间[CI]:0.772,0.885),接收者操作特征曲线下的面积为 0.881(95% CI:0.825,0.924),敏感性为 0.844(95% CI:0.672,0.947),特异性为 0.832(95% CI:0.762,0.888)。AUC 显著优于其他两种深度学习方法(p<0.05,DeLong 等)。此外,在不同的多中心数据集划分变化下,性能表现稳定。
所提出的 TN-USMA 模型可成功区分高风险和低风险 GIST。它准确、稳健、可推广且高效,具有潜在的临床应用价值。