Suppr超能文献

一种用于高精度胃肠道间质瘤识别的轻量级机器学习模型。

A Lightweight Machine Learning Model for High Precision Gastrointestinal Stromal Tumors Identification.

作者信息

Sun Xin, Mo Xiwen, Shi Jing, Zhou Xinran, Niu Yanqing, Zhang Xiao-Dong, Li Man, Li Yonghui

机构信息

Haihe Hospital, Tianjin University, Tianjin 300350, China.

Tianjin Union Medical Center, Nankai University, Tianjin 300071, China.

出版信息

Bioengineering (Basel). 2025 Apr 3;12(4):381. doi: 10.3390/bioengineering12040381.

Abstract

Gastrointestinal stromal tumors (GISTs), which usually develop with a significant malignant potential, are a serious challenge in stromal health. With Endoscopic ultrasound (EUS), GISTs can appear similar to other tumors. This study introduces a lightweight convolutional neural network model optimized for the classification of GISTs and leiomyomas using EUS images only. Models are constructed based on a dataset that comprises 13277 augmented grayscale images derived from 703 patients, ensuring a balanced representation between GIST and leiomyoma cases. The optimized model architecture includes seven convolutional units followed by fully connected layers. After being trained and evaluated with a 5-fold cross-validation, the optimized model achieves an average validation accuracy of 96.2%. The model achieved a sensitivity, specificity, positive predictive value, and negative predictive value of 97.7%, 94.7%, 94.6%, and 97.7%, respectively, and significantly outperformed endoscopists' assessments. The study highlights the model's robustness and consistency. Our results suggest that instead of using developed deep models with fine-tuning, lightweight models with their simpler designs may grasp the essence and drop speckle noise. A lightweight model as a hypothesis with fewer model parameters is preferable to a deeper model with 10 times the model parameters according to Occam's razor statement.

摘要

胃肠道间质瘤(GISTs)通常具有显著的恶性潜能,对间质健康构成严重挑战。在内镜超声(EUS)检查中,GISTs可能与其他肿瘤表现相似。本研究引入了一种轻量级卷积神经网络模型,该模型仅使用EUS图像对GISTs和平滑肌瘤进行分类优化。模型基于一个数据集构建,该数据集包含来自703名患者的13277张增强灰度图像,确保GISTs和平滑肌瘤病例之间的平衡代表性。优化后的模型架构包括七个卷积单元,后面跟着全连接层。经过5折交叉验证训练和评估后,优化后的模型平均验证准确率达到96.2%。该模型的灵敏度、特异度、阳性预测值和阴性预测值分别为97.7%、94.7%、94.6%和97.7%,显著优于内镜医师的评估。该研究突出了模型的稳健性和一致性。我们的结果表明,与其使用经过微调的已开发深度模型,设计更简单的轻量级模型可能更能抓住本质并去除斑点噪声。根据奥卡姆剃刀原则,作为一种假设,具有较少模型参数的轻量级模型比具有其10倍模型参数的更深模型更可取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3134/12024531/ec684d63e930/bioengineering-12-00381-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验