Suppr超能文献

一项系统综述了有助于阐明乳腺癌中基因表达、种族和免疫组织化学定义的亚型之间关系的数据集。

A systematic review of datasets that can help elucidate relationships among gene expression, race, and immunohistochemistry-defined subtypes in breast cancer.

机构信息

Department of Biology, Brigham Young University, Provo, Utah, United States.

出版信息

Cancer Biol Ther. 2021 Sep 2;22(7-9):417-429. doi: 10.1080/15384047.2021.1953902. Epub 2021 Aug 19.

Abstract

Scholarly requirements have led to a massive increase of transcriptomic data in the public domain, with millions of samples available for secondary research. We identified gene-expression datasets representing 10,214 breast-cancer patients in public databases. We focused on datasets that included patient metadata on race and/or immunohistochemistry (IHC) profiling of the ER, PR, and HER-2 proteins. This review provides a summary of these datasets and describes findings from 32 research articles associated with the datasets. These studies have helped to elucidate relationships between IHC, race, and/or treatment options, as well as relationships between IHC status and the breast-cancer intrinsic subtypes. We have also identified broad themes across the analysis methodologies used in these studies, including breast cancer subtyping, deriving predictive biomarkers, identifying differentially expressed genes, and optimizing data processing. Finally, we discuss limitations of prior work and recommend future directions for reusing these datasets in secondary analyses.

摘要

学术需求导致公共领域中转录组学数据的大量增加,数百万个样本可用于二次研究。我们在公共数据库中确定了代表 10214 名乳腺癌患者的基因表达数据集。我们专注于包含患者种族和/或 ER、PR 和 HER-2 蛋白免疫组织化学 (IHC) 分析元数据的数据集。本综述提供了这些数据集的摘要,并描述了与数据集相关的 32 篇研究文章的发现。这些研究有助于阐明 IHC、种族和/或治疗选择之间的关系,以及 IHC 状态与乳腺癌内在亚型之间的关系。我们还确定了这些研究中使用的分析方法的广泛主题,包括乳腺癌亚型、衍生预测生物标志物、识别差异表达基因和优化数据处理。最后,我们讨论了先前工作的局限性,并建议在二次分析中重复使用这些数据集的未来方向。

相似文献

本文引用的文献

1
Expanding and Remixing the Metadata Landscape.拓展与混编元数据领域。
Trends Cancer. 2021 Apr;7(4):276-278. doi: 10.1016/j.trecan.2020.10.011. Epub 2020 Nov 20.
5
Health and Racial Disparity in Breast Cancer.乳腺癌的健康与种族差异。
Adv Exp Med Biol. 2019;1152:31-49. doi: 10.1007/978-3-030-20301-6_3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验