Suppr超能文献

利用深度学习技术和整合组学数据进行乳腺癌的个性化治疗。

Leveraging Deep Learning Techniques and Integrated Omics Data for Tailored Treatment of Breast Cancer.

作者信息

Khan Deeba, Shedole Seema

机构信息

Department of Computer Science and Engineering, Ramaiah Institute of Technology, Bengaluru 560054, India.

出版信息

J Pers Med. 2022 Apr 22;12(5):674. doi: 10.3390/jpm12050674.

Abstract

Multiomics data of cancer patients and cell lines, in synergy with deep learning techniques, have aided in unravelling predictive problems related to cancer research and treatment. However, there is still room for improvement in the performance of the existing models based on the aforementioned combination. In this work, we propose two models that complement the treatment of breast cancer patients. First, we discuss our deep learning-based model for breast cancer subtype classification. Second, we propose DCNN-DR, a deep convolute.ion neural network-drug response method for predicting the effectiveness of drugs on in vitro and in vivo breast cancer datasets. Finally, we applied DCNN-DR for predicting effective drugs for the basal-like breast cancer subtype and validated the results with the information available in the literature. The models proposed use late integration methods and have fairly better predictive performance compared to the existing methods. We use the Pearson correlation coefficient and accuracy as the performance measures for the regression and classification models, respectively.

摘要

癌症患者和细胞系的多组学数据,与深度学习技术协同作用,有助于解决与癌症研究和治疗相关的预测问题。然而,基于上述组合的现有模型在性能方面仍有提升空间。在这项工作中,我们提出了两种补充乳腺癌患者治疗的模型。首先,我们讨论基于深度学习的乳腺癌亚型分类模型。其次,我们提出了DCNN-DR,一种用于预测药物在体外和体内乳腺癌数据集上有效性的深度卷积神经网络-药物反应方法。最后,我们应用DCNN-DR预测基底样乳腺癌亚型的有效药物,并根据文献中的可用信息验证结果。所提出的模型使用后期整合方法,与现有方法相比具有相当更好的预测性能。我们分别使用皮尔逊相关系数和准确率作为回归模型和分类模型的性能指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5cb/9147748/86c11acd2ada/jpm-12-00674-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验