Suppr超能文献

拓展与混编元数据领域。

Expanding and Remixing the Metadata Landscape.

机构信息

Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, PA, USA.

出版信息

Trends Cancer. 2021 Apr;7(4):276-278. doi: 10.1016/j.trecan.2020.10.011. Epub 2020 Nov 20.

Abstract

Genomic data sharing accelerates research. Data are most valuable when they are accompanied by detailed metadata. To date, metadata are often human-annotated descriptions of samples and their handling. We discuss how machine learning-derived elements complement such descriptions to enhance the research ecosystem around genomic data.

摘要

基因组数据共享加速了研究进程。当数据伴随着详细的元数据时,它们最具价值。迄今为止,元数据通常是对样本及其处理的人工注释描述。我们讨论了机器学习衍生元素如何补充这些描述,以增强基因组数据研究生态系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ead/8324015/6de2fe968c55/nihms-1724518-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验