Suppr超能文献

强化学习组态相互作用。

Reinforcement Learning Configuration Interaction.

机构信息

Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.

Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

出版信息

J Chem Theory Comput. 2021 Sep 14;17(9):5482-5491. doi: 10.1021/acs.jctc.1c00010. Epub 2021 Aug 23.

Abstract

Selected configuration interaction (sCI) methods exploit the sparsity of the full configuration interaction (FCI) wave function, yielding significant computational savings and wave function compression without sacrificing the accuracy. Despite recent advances in sCI methods, the selection of important determinants remains an open problem. We explore the possibility of utilizing reinforcement learning approaches to solve the sCI problem. By mapping the configuration interaction problem onto a sequential decision-making process, the agent learns on-the-fly which determinants to include and which to ignore, yielding a compressed wave function at near-FCI accuracy. This method, which we call reinforcement-learned configuration interaction, adds another weapon to the sCI arsenal and highlights how reinforcement learning approaches can potentially help solve challenging problems in electronic structure theory.

摘要

选择的组态相互作用(sCI)方法利用了完全组态相互作用(FCI)波函数的稀疏性,在不牺牲准确性的情况下,实现了显著的计算节省和波函数压缩。尽管 sCI 方法最近取得了进展,但重要行列式的选择仍然是一个悬而未决的问题。我们探索了利用强化学习方法来解决 sCI 问题的可能性。通过将组态相互作用问题映射到一个顺序决策过程中,代理在飞行中学习要包含哪些行列式以及要忽略哪些行列式,从而在接近 FCI 精度的情况下生成压缩波函数。这种方法,我们称之为强化学习组态相互作用,为 sCI 武器库增添了另一种武器,并强调了强化学习方法如何能够潜在地帮助解决电子结构理论中的挑战性问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验