Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.
Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
J Chem Theory Comput. 2021 Sep 14;17(9):5482-5491. doi: 10.1021/acs.jctc.1c00010. Epub 2021 Aug 23.
Selected configuration interaction (sCI) methods exploit the sparsity of the full configuration interaction (FCI) wave function, yielding significant computational savings and wave function compression without sacrificing the accuracy. Despite recent advances in sCI methods, the selection of important determinants remains an open problem. We explore the possibility of utilizing reinforcement learning approaches to solve the sCI problem. By mapping the configuration interaction problem onto a sequential decision-making process, the agent learns on-the-fly which determinants to include and which to ignore, yielding a compressed wave function at near-FCI accuracy. This method, which we call reinforcement-learned configuration interaction, adds another weapon to the sCI arsenal and highlights how reinforcement learning approaches can potentially help solve challenging problems in electronic structure theory.
选择的组态相互作用(sCI)方法利用了完全组态相互作用(FCI)波函数的稀疏性,在不牺牲准确性的情况下,实现了显著的计算节省和波函数压缩。尽管 sCI 方法最近取得了进展,但重要行列式的选择仍然是一个悬而未决的问题。我们探索了利用强化学习方法来解决 sCI 问题的可能性。通过将组态相互作用问题映射到一个顺序决策过程中,代理在飞行中学习要包含哪些行列式以及要忽略哪些行列式,从而在接近 FCI 精度的情况下生成压缩波函数。这种方法,我们称之为强化学习组态相互作用,为 sCI 武器库增添了另一种武器,并强调了强化学习方法如何能够潜在地帮助解决电子结构理论中的挑战性问题。