Suppr超能文献

基于卷积神经网络的前列腺癌检测系统中斑块聚合的宽深神经网络模型。

Wide & Deep neural network model for patch aggregation in CNN-based prostate cancer detection systems.

机构信息

Robotics and Tech. of Computers Lab., Universidad de Sevilla, 41012, Seville, Spain; Escuela Técnica Superior de Ingeniería Informática (ETSII), Universidad de Sevilla, 41012, Seville, Spain; Escuela Politécnica Superior (EPS), Universidad de Sevilla, 41011, Seville, Spain; Smart Computer Systems Research and Engineering Lab (SCORE), Research Institute of Computer Engineering (I3US), Universidad de Sevilla, 41012, Seville, Spain.

Robotics and Tech. of Computers Lab., Universidad de Sevilla, 41012, Seville, Spain; Escuela Técnica Superior de Ingeniería Informática (ETSII), Universidad de Sevilla, 41012, Seville, Spain; Escuela Politécnica Superior (EPS), Universidad de Sevilla, 41011, Seville, Spain; Smart Computer Systems Research and Engineering Lab (SCORE), Research Institute of Computer Engineering (I3US), Universidad de Sevilla, 41012, Seville, Spain.

出版信息

Comput Biol Med. 2021 Sep;136:104743. doi: 10.1016/j.compbiomed.2021.104743. Epub 2021 Aug 14.

Abstract

Prostate cancer (PCa) is one of the most commonly diagnosed cancer and one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020. Artificial Intelligence algorithms have had a huge impact on medical image analysis, including digital histopathology, where Convolutional Neural Networks (CNNs) are used to provide a fast and accurate diagnosis, supporting experts in this task. To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images. Due to the size of these images, neural networks cannot use them as input and, therefore, small subimages called patches are extracted and predicted, obtaining a patch-level classification. In this work, a novel patch aggregation method based on a custom Wide & Deep neural network model is presented, which performs a slide-level classification using the patch-level classes obtained from a CNN. The malignant tissue ratio, a 10-bin malignant probability histogram, the least squares regression line of the histogram, and the number of malignant connected components are used by the proposed model to perform the classification. An accuracy of 94.24% and a sensitivity of 98.87% were achieved, proving that the proposed system could aid pathologists by speeding up the screening process and, thus, contribute to the fight against PCa.

摘要

前列腺癌 (PCa) 是最常见的癌症之一,也是男性死亡的主要原因之一,2020 年全球新发病例约 141 万例,死亡病例约 37.5 万例。人工智能算法对医学图像分析产生了巨大影响,包括数字组织病理学,其中卷积神经网络 (CNN) 用于提供快速准确的诊断,为专家在这项任务中提供支持。为了进行自动诊断,首先将前列腺组织样本数字化为千兆像素分辨率的全幻灯片图像。由于这些图像的大小,神经网络不能将其用作输入,因此提取并预测小的子图像,称为补丁,并获得补丁级别的分类。在这项工作中,提出了一种基于定制的宽而深的神经网络模型的新的补丁聚合方法,该方法使用从 CNN 获得的补丁级分类来执行幻灯片级分类。所提出的模型使用恶性组织比例、10 -bin 恶性概率直方图、直方图的最小二乘回归线和恶性连通分量的数量来执行分类。该系统实现了 94.24%的准确率和 98.87%的灵敏度,证明该系统可以通过加快筛查过程来帮助病理学家,从而有助于对抗前列腺癌。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验