Suppr超能文献

数字病理学中的人工智能:诊断测试准确性的系统评价与荟萃分析

Artificial intelligence in digital pathology: a systematic review and meta-analysis of diagnostic test accuracy.

作者信息

McGenity Clare, Clarke Emily L, Jennings Charlotte, Matthews Gillian, Cartlidge Caroline, Freduah-Agyemang Henschel, Stocken Deborah D, Treanor Darren

机构信息

University of Leeds, Leeds, UK.

Leeds Teaching Hospitals NHS Trust, Leeds, UK.

出版信息

NPJ Digit Med. 2024 May 4;7(1):114. doi: 10.1038/s41746-024-01106-8.

Abstract

Ensuring diagnostic performance of artificial intelligence (AI) before introduction into clinical practice is essential. Growing numbers of studies using AI for digital pathology have been reported over recent years. The aim of this work is to examine the diagnostic accuracy of AI in digital pathology images for any disease. This systematic review and meta-analysis included diagnostic accuracy studies using any type of AI applied to whole slide images (WSIs) for any disease. The reference standard was diagnosis by histopathological assessment and/or immunohistochemistry. Searches were conducted in PubMed, EMBASE and CENTRAL in June 2022. Risk of bias and concerns of applicability were assessed using the QUADAS-2 tool. Data extraction was conducted by two investigators and meta-analysis was performed using a bivariate random effects model, with additional subgroup analyses also performed. Of 2976 identified studies, 100 were included in the review and 48 in the meta-analysis. Studies were from a range of countries, including over 152,000 whole slide images (WSIs), representing many diseases. These studies reported a mean sensitivity of 96.3% (CI 94.1-97.7) and mean specificity of 93.3% (CI 90.5-95.4). There was heterogeneity in study design and 99% of studies identified for inclusion had at least one area at high or unclear risk of bias or applicability concerns. Details on selection of cases, division of model development and validation data and raw performance data were frequently ambiguous or missing. AI is reported as having high diagnostic accuracy in the reported areas but requires more rigorous evaluation of its performance.

摘要

在将人工智能(AI)引入临床实践之前确保其诊断性能至关重要。近年来,使用AI进行数字病理学研究的数量不断增加。这项工作的目的是检验AI在数字病理学图像中对任何疾病的诊断准确性。本系统评价和荟萃分析纳入了使用任何类型AI应用于全切片图像(WSIs)诊断任何疾病的诊断准确性研究。参考标准是通过组织病理学评估和/或免疫组织化学进行诊断。于2022年6月在PubMed、EMBASE和CENTRAL中进行检索。使用QUADAS-2工具评估偏倚风险和适用性问题。由两名研究人员进行数据提取,并使用双变量随机效应模型进行荟萃分析,同时还进行了额外的亚组分析。在2976项已识别的研究中,100项纳入综述,48项纳入荟萃分析。研究来自多个国家,包括超过152,000张全切片图像(WSIs),涵盖多种疾病。这些研究报告的平均敏感性为96.3%(94.1-97.7可信区间),平均特异性为93.3%(90.5-95.4可信区间)。研究设计存在异质性,99%被确定纳入的研究至少有一个领域存在高或不明确的偏倚风险或适用性问题。关于病例选择、模型开发和验证数据划分以及原始性能数据的详细信息常常不明确或缺失。在报告的领域中,AI被报道具有较高的诊断准确性,但需要对其性能进行更严格的评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bfb/11069583/178a50f5dc0e/41746_2024_1106_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验