Suppr超能文献

基于图像级标签的端到端训练检测全切片图像中的前列腺癌

Detection of Prostate Cancer in Whole-Slide Images Through End-to-End Training With Image-Level Labels.

出版信息

IEEE Trans Med Imaging. 2021 Jul;40(7):1817-1826. doi: 10.1109/TMI.2021.3066295. Epub 2021 Jun 30.

Abstract

Prostate cancer is the most prevalent cancer among men in Western countries, with 1.1 million new diagnoses every year. The gold standard for the diagnosis of prostate cancer is a pathologists' evaluation of prostate tissue. To potentially assist pathologists deep / learning / based cancer detection systems have been developed. Many of the state-of-the-art models are patch / based convolutional neural networks, as the use of entire scanned slides is hampered by memory limitations on accelerator cards. Patch-based systems typically require detailed, pixel-level annotations for effective training. However, such annotations are seldom readily available, in contrast to the clinical reports of pathologists, which contain slide-level labels. As such, developing algorithms which do not require manual pixel-wise annotations, but can learn using only the clinical report would be a significant advancement for the field. In this paper, we propose to use a streaming implementation of convolutional layers, to train a modern CNN (ResNet / 34) with 21 million parameters end-to-end on 4712 prostate biopsies. The method enables the use of entire biopsy images at high-resolution directly by reducing the GPU memory requirements by 2.4 TB. We show that modern CNNs, trained using our streaming approach, can extract meaningful features from high-resolution images without additional heuristics, reaching similar performance as state-of-the-art patch-based and multiple-instance learning methods. By circumventing the need for manual annotations, this approach can function as a blueprint for other tasks in histopathological diagnosis. The source code to reproduce the streaming models is available at https://github.com/DIAGNijmegen/ pathology-streaming-pipeline.

摘要

前列腺癌是西方国家男性中最常见的癌症,每年有 110 万人新诊断出该病。前列腺癌的诊断金标准是病理学家对前列腺组织的评估。为了帮助病理学家进行诊断,已经开发出了基于深度学习的癌症检测系统。许多最先进的模型都是基于补丁的卷积神经网络,因为使用整个扫描幻灯片会受到加速器卡内存限制的阻碍。基于补丁的系统通常需要详细的、像素级的注释才能进行有效的训练。然而,与病理学家的临床报告相比,这些注释很少是现成的,临床报告包含幻灯片级别的标签。因此,开发不需要手动像素级注释、但可以仅使用临床报告进行学习的算法,将是该领域的一个重大进展。在本文中,我们提出使用卷积层的流实现,在 4712 例前列腺活检上,使用 2100 万个参数对现代卷积神经网络(ResNet-34)进行端到端训练。该方法通过将 GPU 内存需求减少 2.4TB,使得可以直接使用高分辨率的整个活检图像。我们表明,使用我们的流方法训练的现代卷积神经网络可以从高分辨率图像中提取有意义的特征,而无需额外的启发式方法,其性能与最先进的基于补丁和多实例学习方法相似。通过避免手动注释的需求,这种方法可以作为组织病理学诊断中其他任务的蓝图。重现流模型的源代码可在 https://github.com/DIAGNijmegen/pathology-streaming-pipeline 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验