Santos N F, Rodrigues J, Pereira S O, Fernandes A J S, Monteiro T, Costa F M
I3N, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
Sci Rep. 2021 Aug 25;11(1):17154. doi: 10.1038/s41598-021-96305-8.
The inherent scalability, low production cost and mechanical flexibility of laser-induced graphene (LIG) combined with its high electrical conductivity, hierarchical porosity and large surface area are appealing characteristics for many applications. Still, other materials can be combined with LIG to provide added functionalities and enhanced performance. This work exploits the most adequate electrodeposition parameters to produce LIG/ZnO nanocomposites. Low-temperature pulsed electrodeposition allowed the conformal and controlled deposition of ZnO rods deep inside the LIG pores whilst maintaining its inherent porosity, which constitute fundamental advances regarding other methods for LIG/ZnO composite production. Compared to bare LIG, the composites more than doubled electrode capacitance up to 1.41 mF cm in 1 M KCl, while maintaining long-term cycle stability, low ohmic losses and swift electron transfer. The composites also display a luminescence band peaked at the orange/red spectral region, with the main excitation maxima at ~ 3.33 eV matching the expected for the ZnO bandgap at room temperature. A pronounced sub-bandgap tail of states with an onset absorption near 3.07 eV indicates a high amount of defect states, namely surface-related defects. This work shows that these environmentally sustainable multifunctional nanocomposites are valid alternatives for supercapacitors, electrochemical/optical biosensors and photocatalytic/photoelectrochemical devices.
激光诱导石墨烯(LIG)具有固有的可扩展性、低生产成本和机械柔韧性,同时具备高导电性、分级孔隙率和大表面积,这些特性使其在许多应用中颇具吸引力。尽管如此,其他材料仍可与LIG结合,以提供附加功能并增强性能。这项工作探索了最适宜的电沉积参数来制备LIG/ZnO纳米复合材料。低温脉冲电沉积能够在LIG孔隙内部深处实现ZnO棒的保形且可控沉积,同时保持其固有孔隙率,这相对于其他制备LIG/ZnO复合材料的方法而言是重大进展。与裸LIG相比,在1 M KCl中,该复合材料的电极电容增加了一倍多,达到1.41 mF cm,同时保持了长期循环稳定性、低欧姆损耗和快速的电子转移。该复合材料还在橙/红光谱区域显示出一个发光带,其主要激发最大值在~3.33 eV,与室温下ZnO带隙的预期值相符。在3.07 eV附近出现起始吸收的明显的亚带隙态尾表明存在大量缺陷态,即与表面相关的缺陷。这项工作表明,这些环境可持续的多功能纳米复合材料是超级电容器、电化学/光学生物传感器以及光催化/光电化学器件的有效替代材料。