Suppr超能文献

通过对用于柔性和便携式能量存储的激光诱导石墨烯和多壁碳纳米管涂层进行设计优化来提高超级电容器性能。

Enhancing supercapacitor performance through design optimization of laser-induced graphene and MWCNT coatings for flexible and portable energy storage.

作者信息

Tariq Hassan, Awan Saif Ullah, Hussain Danish, Rizwan Syed, Shah Saqlain A, Zainab Sana, Riaz M Bilal

机构信息

Department of Electrical Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.

Department of Mechatronics Engineering, NUST College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.

出版信息

Sci Rep. 2023 Nov 30;13(1):21116. doi: 10.1038/s41598-023-48518-2.

Abstract

The field of supercapacitors consistently focuses on research and challenges to improve energy efficiency, capacitance, flexibility, and stability. Low-cost laser-induced graphene (LIG) offers a promising alternative to commercially available graphene for next-generation wearable and portable devices, thanks to its remarkable specific surface area, excellent mechanical flexibility, and exceptional electrical properties. We report on the development of LIG-based flexible supercapacitors with optimized geometries, which demonstrate high capacitance and energy density while maintaining flexibility and stability. Three-dimensional porous graphene films were synthesized, and devices with optimized parameters were fabricated and tested. One type of device utilized LIG, while two other types were fabricated on LIG by coating multi-walled carbon nanotubes (MWCNT) at varying concentrations. Characterization techniques, including scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy, and voltammetry, were employed to analyze the fabricated devices. AFM analysis revealed a surface roughness of 2.03 µm for LIG due to laser treatment. SEM images displayed compact, dense, and porous surface morphology. XRD analysis confirmed the presence of graphene and graphene oxide, which was further supported by energy-dispersive X-ray spectroscopy (EDX) data. Raman spectroscopy indicated that the fabricated samples exhibited distinct D and G bands at 1362 cm and 1579 cm, respectively. Cyclic voltammetry (CV) results showed that LIG's capacitance, power density, and energy density were 6.09 mF cm, 0.199 mW cm, and 3.38 µWh cm, respectively, at a current density of 0.2 mA cm. The LIG-MWCNT coated electrode exhibited a higher energy density of 6.05 µWh cm and an areal-specific capacitance of 51.975 mF cm compared to the LIG-based devices. The fabricated device has potential applications in smart electronics, nanorobotics, microelectromechanical systems (MEMS), and wearable and portable electronics.

摘要

超级电容器领域一直专注于提高能源效率、电容、柔韧性和稳定性的研究及挑战。低成本的激光诱导石墨烯(LIG)凭借其显著的比表面积、出色的机械柔韧性和优异的电学性能,为下一代可穿戴和便携式设备提供了一种有前景的替代商用石墨烯的材料。我们报道了具有优化几何结构的基于LIG的柔性超级电容器的开发,这些超级电容器在保持柔韧性和稳定性的同时展现出高电容和能量密度。合成了三维多孔石墨烯薄膜,并制造和测试了具有优化参数的器件。一种器件使用了LIG,另外两种类型是通过在LIG上涂覆不同浓度的多壁碳纳米管(MWCNT)制成的。采用了包括扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线衍射(XRD)、拉曼光谱和伏安法在内的表征技术来分析所制造的器件。AFM分析显示,由于激光处理,LIG的表面粗糙度为2.03 µm。SEM图像显示出致密、紧凑且多孔的表面形态。XRD分析证实了石墨烯和氧化石墨烯的存在,能量色散X射线光谱(EDX)数据进一步支持了这一点。拉曼光谱表明,所制造的样品在1362 cm和1579 cm处分别呈现出明显的D带和G带。循环伏安法(CV)结果表明,在电流密度为0.2 mA cm时,LIG的电容、功率密度和能量密度分别为6.09 mF cm、0.199 mW cm和3.38 µWh cm。与基于LIG的器件相比,涂覆有LIG-MWCNT的电极展现出更高的能量密度6.05 µWh cm和面积比电容51.975 mF cm。所制造的器件在智能电子、纳米机器人、微机电系统(MEMS)以及可穿戴和便携式电子设备中具有潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e7/10689738/c293c741152e/41598_2023_48518_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验