Suppr超能文献

基于读优先 LSTM 的新型编解码器模型用于空气污染预测。

A novel Encoder-Decoder model based on read-first LSTM for air pollutant prediction.

机构信息

College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, PR China.

The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 201804, PR China.

出版信息

Sci Total Environ. 2021 Apr 15;765:144507. doi: 10.1016/j.scitotenv.2020.144507. Epub 2021 Jan 5.

Abstract

Accurate air pollutant prediction allows effective environment management to reduce the impact of pollution and prevent pollution incidents. Existing studies of air pollutant prediction are mostly interdisciplinary involving environmental science and computer science where the problem is formulated as time series prediction. A prevalent recent approach to time series prediction is the Encoder-Decoder model, which is based on recurrent neural networks (RNN) such as long short-term memory (LSTM), and great potential has been demonstrated. An LSTM network relies on various gate units, but in most existing studies the correlation between gate units is ignored. This correlation is important for establishing the relationship of the random variables in a time series as the stronger is this correlation, the stronger is the relationship between the random variables. In this paper we propose an improved LSTM, named Read-first LSTM or RLSTM for short, which is a more powerful temporal feature extractor than RNN, LSTM and Gated Recurrent Unit (GRU). RLSTM has some useful properties: (1) enables better store and remember capabilities in longer time series and (2) overcomes the problem of dependency between gate units. Since RLSTM is good at long term feature extraction, it is expected to perform well in time series prediction. Therefore, we use RLSTM as the Encoder and LSTM as the Decoder to build an Encoder-Decoder model (EDSModel) for pollutant prediction in this paper. Our experimental results show, for 1 to 24 h prediction, the proposed prediction model performed well with a root mean square error of 30.218. The effectiveness and superiority of RLSTM and the prediction model have been demonstrated.

摘要

准确的空气污染物预测可以实现有效的环境管理,以减少污染的影响并预防污染事件。现有的空气污染物预测研究大多涉及环境科学和计算机科学等多个学科,问题被表述为时间序列预测。时间序列预测的一种流行的最近方法是编码器-解码器模型,它基于循环神经网络(RNN),如长短期记忆(LSTM),并展示了巨大的潜力。LSTM 网络依赖于各种门单元,但在大多数现有研究中,门单元之间的相关性被忽略了。这种相关性对于建立时间序列中随机变量的关系很重要,因为这种相关性越强,随机变量之间的关系就越强。在本文中,我们提出了一种改进的 LSTM,称为 Read-first LSTM 或简称 RLSTM,它是一种比 RNN、LSTM 和门控循环单元(GRU)更强大的时间特征提取器。RLSTM 具有一些有用的特性:(1)能够在更长的时间序列中更好地存储和记忆能力;(2)克服了门单元之间的依赖性问题。由于 RLSTM 擅长长期特征提取,因此有望在时间序列预测中表现出色。因此,我们在本文中使用 RLSTM 作为编码器,LSTM 作为解码器,构建了一个用于污染物预测的编码器-解码器模型(EDSModel)。我们的实验结果表明,对于 1 到 24 小时的预测,所提出的预测模型表现良好,均方根误差为 30.218。已经证明了 RLSTM 和预测模型的有效性和优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验