Cassidy Jessica M, Wodeyar Anirudh, Srinivasan Ramesh, Cramer Steven C
Department of Allied Health Sciences, University of North Carolina, Chapel Hill, North Carolina, USA.
Department of Cognitive Sciences, University of California Irvine, Irvine, California, USA.
Hum Brain Mapp. 2021 Dec 1;42(17):5636-5647. doi: 10.1002/hbm.25643. Epub 2021 Aug 26.
Neural oscillations may contain important information pertaining to stroke rehabilitation. This study examined the predictive performance of electroencephalography-derived neural oscillations following stroke using a data-driven approach. Individuals with stroke admitted to an inpatient rehabilitation facility completed a resting-state electroencephalography recording and structural neuroimaging around the time of admission and motor testing at admission and discharge. Using a lasso regression model with cross-validation, we determined the extent of motor recovery (admission to discharge change in Functional Independence Measurement motor subscale score) prediction from electroencephalography, baseline motor status, and corticospinal tract injury. In 27 participants, coherence in a 1-30 Hz band between leads overlying ipsilesional primary motor cortex and 16 leads over bilateral hemispheres predicted 61.8% of the variance in motor recovery. High beta (20-30 Hz) and alpha (8-12 Hz) frequencies contributed most to the model demonstrating both positive and negative associations with motor recovery, including high beta leads in supplementary motor areas and ipsilesional ventral premotor and parietal regions and alpha leads overlying contralesional temporal-parietal and ipsilesional parietal regions. Electroencephalography power, baseline motor status, and corticospinal tract injury did not significantly predict motor recovery during hospitalization (R = 0-6.2%). Findings underscore the relevance of oscillatory synchronization in early stroke rehabilitation while highlighting contributions from beta and alpha frequency bands and frontal, parietal, and temporal-parietal regions overlooked by traditional hypothesis-driven prediction models.
神经振荡可能包含与中风康复相关的重要信息。本研究采用数据驱动的方法,检验了中风后脑电图衍生的神经振荡的预测性能。入住住院康复机构的中风患者在入院时完成了静息态脑电图记录和结构神经成像,并在入院和出院时进行了运动测试。使用带有交叉验证的套索回归模型,我们确定了根据脑电图、基线运动状态和皮质脊髓束损伤来预测运动恢复程度(功能独立性测量运动子量表评分从入院到出院的变化)的情况。在27名参与者中,患侧初级运动皮层上方导联与双侧半球16个导联之间1-30Hz频段的相干性预测了运动恢复中61.8%的方差。高β(20-30Hz)和α(8-12Hz)频率对模型的贡献最大,显示出与运动恢复的正负关联,包括辅助运动区、患侧腹侧运动前区和顶叶区域的高β导联,以及对侧颞顶叶和患侧顶叶区域上方的α导联。脑电图功率、基线运动状态和皮质脊髓束损伤在住院期间并未显著预测运动恢复情况(R=0-6.2%)。研究结果强调了振荡同步在早期中风康复中的相关性,同时突出了β和α频段以及传统假设驱动预测模型所忽视的额叶、顶叶和颞顶叶区域的贡献。