Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, F-75015 Paris, France.
Cells. 2021 Jul 27;10(8):1905. doi: 10.3390/cells10081905.
Cytoplasmic intermediate filaments (IFs), which together with actin and microtubules form the cytoskeleton, are composed of a large and diverse family of proteins. Efforts to elucidate the molecular mechanisms responsible for IF-associated diseases increasingly point towards a major contribution of IFs to the cell's ability to adapt, resist and respond to mechanical challenges. From these observations, which echo the impressive resilience of IFs in vitro, we here discuss the role of IFs as master integrators of cell and tissue mechanics. In this review, we summarize our current understanding of the contribution of IFs to cell and tissue mechanics and explain these results in light of recent in vitro studies that have investigated physical properties of single IFs and IF networks. Finally, we highlight how changes in IF gene expression, network assembly dynamics, and post-translational modifications can tune IF properties to adapt cell and tissue mechanics to changing environments.
细胞质中间丝(IFs)与肌动蛋白和微管一起构成细胞骨架,由一大组多样化的蛋白质组成。为阐明导致 IF 相关疾病的分子机制,人们进行了大量努力,这些研究越来越多地指向 IF 对细胞适应、抵抗和应对机械挑战的能力做出重大贡献。基于 IF 在体外具有令人印象深刻的弹性这一观察结果,我们在此讨论 IF 作为细胞和组织力学的主要整合因子的作用。在这篇综述中,我们总结了我们对 IF 对细胞和组织力学的贡献的现有认识,并根据最近研究单个 IF 和 IF 网络物理特性的体外研究来解释这些结果。最后,我们强调了 IF 基因表达、网络组装动力学和翻译后修饰的变化如何调节 IF 的特性,以使细胞和组织力学适应不断变化的环境。