Suppr超能文献

用于量子计算推荐系统的特征选择

Feature Selection for Recommender Systems with Quantum Computing.

作者信息

Nembrini Riccardo, Ferrari Dacrema Maurizio, Cremonesi Paolo

机构信息

ContentWise, Politecnico di Milano, Via Privata Simone Schiaffino, 11, 20158 Milano, Italy.

出版信息

Entropy (Basel). 2021 Jul 28;23(8):970. doi: 10.3390/e23080970.

Abstract

The promise of quantum computing to open new unexplored possibilities in several scientific fields has been long discussed, but until recently the lack of a functional quantum computer has confined this discussion mostly to theoretical algorithmic papers. It was only in the last few years that small but functional quantum computers have become available to the broader research community. One paradigm in particular, , can be used to sample optimal solutions for a number of NP-hard optimization problems represented with classical operations research tools, providing an easy access to the potential of this emerging technology. One of the tasks that most naturally fits in this mathematical formulation is feature selection. In this paper, we investigate how to design a hybrid feature selection algorithm for recommender systems that leverages the domain knowledge and behavior hidden in the user interactions data. We represent the feature selection as an optimization problem and solve it on a real quantum computer, provided by D-Wave. The results indicate that the proposed approach is effective in selecting a limited set of important features and that quantum computers are becoming powerful enough to enter the wider realm of applied science.

摘要

量子计算有望在多个科学领域开启新的未被探索的可能性,这一话题已被讨论良久,但直到最近,由于缺乏实用的量子计算机,相关讨论大多局限于理论算法论文。直到过去几年,小型但实用的量子计算机才开始为更广泛的研究群体所用。特别是一种范式,可以用于为许多用经典运筹学工具表示的NP难优化问题采样最优解,从而使人们能够轻松接触到这项新兴技术的潜力。最自然地适用于这种数学公式的任务之一是特征选择。在本文中,我们研究如何为推荐系统设计一种混合特征选择算法,该算法利用用户交互数据中隐藏的领域知识和行为。我们将特征选择表示为一个优化问题,并在由D-Wave提供的真实量子计算机上求解。结果表明,所提出的方法在选择一组有限的重要特征方面是有效的,并且量子计算机正变得足够强大,能够进入更广泛的应用科学领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bd1/8391326/8d6c7126d852/entropy-23-00970-g001.jpg

相似文献

1
Feature Selection for Recommender Systems with Quantum Computing.
Entropy (Basel). 2021 Jul 28;23(8):970. doi: 10.3390/e23080970.
2
A quantum computing approach for minimum loss problems in electrical distribution networks.
Sci Rep. 2023 Jul 4;13(1):10777. doi: 10.1038/s41598-023-37293-9.
4
Solving the resource constrained project scheduling problem with quantum annealing.
Sci Rep. 2024 Jul 22;14(1):16784. doi: 10.1038/s41598-024-67168-6.
5
Quantum computing for transport network design problems.
Sci Rep. 2023 Jul 28;13(1):12267. doi: 10.1038/s41598-023-38787-2.
6
Analyzing recommender systems for health promotion using a multidisciplinary taxonomy: A scoping review.
Int J Med Inform. 2018 Jun;114:143-155. doi: 10.1016/j.ijmedinf.2017.12.018. Epub 2017 Dec 28.
7
mRNA codon optimization with quantum computers.
PLoS One. 2021 Oct 29;16(10):e0259101. doi: 10.1371/journal.pone.0259101. eCollection 2021.
9
Sampling diverse near-optimal solutions via algorithmic quantum annealing.
Phys Rev E. 2023 Dec;108(6-2):065303. doi: 10.1103/PhysRevE.108.065303.
10
A QUBO Formulation of Minimum Multicut Problem Instances in Trees for D-Wave Quantum Annealers.
Sci Rep. 2019 Nov 20;9(1):17216. doi: 10.1038/s41598-019-53585-5.

引用本文的文献

本文引用的文献

1
Nonnegative/Binary matrix factorization with a D-Wave quantum annealer.
PLoS One. 2018 Dec 10;13(12):e0206653. doi: 10.1371/journal.pone.0206653. eCollection 2018.
2
Solving the apparent diversity-accuracy dilemma of recommender systems.
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4511-5. doi: 10.1073/pnas.1000488107. Epub 2010 Feb 22.
3
Optimization by simulated annealing.
Science. 1983 May 13;220(4598):671-80. doi: 10.1126/science.220.4598.671.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验