Suppr超能文献

使用量子计算机进行 mRNA 密码子优化。

mRNA codon optimization with quantum computers.

机构信息

Data and Computational Science, Medicinal Sciences and Technology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America.

Artificial Intelligence and Machine Learning, Medicinal Sciences and Technology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America.

出版信息

PLoS One. 2021 Oct 29;16(10):e0259101. doi: 10.1371/journal.pone.0259101. eCollection 2021.

Abstract

Reverse translation of polypeptide sequences to expressible mRNA constructs is a NP-hard combinatorial optimization problem. Each amino acid in the protein sequence can be represented by as many as six codons, and the process of selecting the combination that maximizes probability of expression is termed codon optimization. This work investigates the potential impact of leveraging quantum computing technology for codon optimization. A Quantum Annealer (QA) is compared to a standard genetic algorithm (GA) programmed with the same objective function. The QA is found to be competitive in identifying optimal solutions. The utility of gate-based systems is also evaluated using a simulator resulting in the finding that while current generations of devices lack the hardware requirements, in terms of both qubit count and connectivity, to solve realistic problems, future generation devices may be highly efficient.

摘要

多肽序列到可表达的 mRNA 构建体的反向翻译是一个 NP 难的组合优化问题。蛋白质序列中的每个氨基酸可以由多达六个密码子表示,而选择最大化表达概率的组合的过程被称为密码子优化。这项工作研究了利用量子计算技术进行密码子优化的潜在影响。将量子退火器 (QA) 与使用相同目标函数编程的标准遗传算法 (GA) 进行比较。结果发现,QA 在确定最佳解决方案方面具有竞争力。还使用模拟器评估了基于门的系统的实用性,结果发现,虽然当前几代设备在量子比特数和连接性方面都缺乏解决实际问题的硬件要求,但未来几代设备可能效率很高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2d9/8555812/dc8a72341c6d/pone.0259101.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验