Suppr超能文献

通过嵌入式三维超材料中磁等离子体共振的衍射耦合实现双窄法诺共振用于高质量传感

Double Narrow Fano Resonances via Diffraction Coupling of Magnetic Plasmon Resonances in Embedded 3D Metamaterials for High-Quality Sensing.

作者信息

Hu Haitao, Lu Xue, Huang Jianhua, Chen Kai, Su Jun, Yan Zhendong, Tang Chaojun, Cai Pingen

机构信息

Department of Physical Education, Nanjing Forestry University, Nanjing 210037, China.

Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China.

出版信息

Nanomaterials (Basel). 2021 Dec 11;11(12):3361. doi: 10.3390/nano11123361.

Abstract

We theoretically demonstrate an approach to generate the double narrow Fano resonances via diffraction coupling of magnetic plasmon (MP) resonances by embedding 3D metamaterials composed of vertical Au U-shaped split-ring resonators (VSRRs) array into a dielectric substrate. Our strategy offers a homogeneous background allowing strong coupling between the MP resonances of VSRRs and the two surface collective optical modes of a periodic array resulting from Wood anomaly, which leads to two narrow hybridized MP modes from the visible to near-infrared regions. In addition, the interaction effects in the VSRRs with various geometric parameters are also systematically studied. Owing to the narrow hybrid MP mode being highly sensitive to small changes in the surrounding media, the sensitivity and the figure of merit () of the embedded 3D metamaterials with fabrication feasibility were as high as 590 nm/RIU and 104, respectively, which holds practical applications in label-free biosensing, such as the detection of medical diagnoses and sport doping drugs.

摘要

我们从理论上证明了一种通过将由垂直金U形开口环谐振器(VSRR)阵列组成的三维超材料嵌入介电基片中,利用磁等离子体(MP)谐振的衍射耦合来产生双窄法诺共振的方法。我们的策略提供了一个均匀的背景,使得VSRR的MP谐振与由伍德异常产生的周期性阵列的两个表面集体光学模式之间能够实现强耦合,从而在可见光到近红外区域产生两个窄的杂化MP模式。此外,还系统地研究了具有各种几何参数的VSRR中的相互作用效应。由于窄杂化MP模式对周围介质的微小变化高度敏感,具有制造可行性的嵌入式三维超材料的灵敏度和品质因数分别高达590 nm/RIU和104,这在无标记生物传感中具有实际应用,如医学诊断和运动兴奋剂药物的检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ab4/8708183/0015a128af71/nanomaterials-11-03361-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验