Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary.
London Centre for Nanotechnology, University College London, London WC1H 0AH, UK.
Int J Mol Sci. 2021 Aug 20;22(16):8989. doi: 10.3390/ijms22168989.
Mechanical forces acting on cell-cell adhesion modulate the barrier function of endothelial cells. The actively remodeled actin cytoskeleton impinges on cell-cell adhesion to counteract external forces. We applied stress on endothelial monolayers by mechanical stretch to uncover the role of BRAF in the stress-induced response. Control cells responded to external forces by organizing and stabilizing actin cables in the stretched cell junctions. This was accompanied by an increase in intercellular gap formation, which was prevented in BRAF knockdown monolayers. In the absence of BRAF, there was excess stress fiber formation due to the enhanced reorganization of actin fibers. Our findings suggest that stretch-induced intercellular gap formation, leading to a decrease in barrier function of blood vessels, can be reverted by BRAF RNAi. This is important when the endothelium experiences changes in external stresses caused by high blood pressure, leading to edema, or by immune or cancer cells in inflammation or metastasis.
细胞-细胞黏附所受的机械力可调节内皮细胞的屏障功能。不断重塑的肌动蛋白细胞骨架作用于细胞-细胞黏附,以抵抗外力。我们通过机械拉伸对内皮单层细胞施加压力,以揭示 BRAF 在应激反应中的作用。对照细胞通过在拉伸细胞连接处组织和稳定肌动蛋白纤维来对外力做出反应。这伴随着细胞间间隙形成的增加,而 BRAF 敲低单层细胞中则阻止了这种增加。在 BRAF 缺失的情况下,由于肌动蛋白纤维的重新组织,会形成过多的应力纤维。我们的研究结果表明,拉伸诱导的细胞间间隙形成,导致血管屏障功能下降,可以通过 BRAF RNAi 逆转。当内皮细胞经历由高血压引起的外部压力变化时,这一点很重要,这种变化会导致水肿,或者在炎症或转移过程中由免疫细胞或癌细胞引起。