文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

控制用于细胞抑制剂靶向递送的磁性氧化铁纳米颗粒的运动。

Controlling the Movement of Magnetic Iron Oxide Nanoparticles Intended for Targeted Delivery of Cytostatics.

机构信息

Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, Saint-Petersburg, 197341, Russian Federation.

Saint Petersburg Electrotechnical University "LETI", Saint-Petersburg, 197376, Russian Federation.

出版信息

Int J Nanomedicine. 2021 Aug 20;16:5651-5664. doi: 10.2147/IJN.S318200. eCollection 2021.


DOI:10.2147/IJN.S318200
PMID:34447247
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8384349/
Abstract

BACKGROUND: A promising approach to solve the problem of cytostatic toxicity is targeted drug transport using magnetic nanoparticles (MNPs). PURPOSE: To use calculation to determine the optimal characteristics of the magnetic field for controlling MNPs in the body, and to evaluate the efficiency of magnetically controlled delivery of MNPs in vitro and in vivo to a tumour site in mice. MATERIAL AND METHODS: For the in vitro study, reference MNPs were used, while for in vivo studies, MNPs coated in polylactide including fluorescent indocyanine (MNPs-ICG) were used. The in vivo luminescence intensity study was performed in mice with tumours, with and without of a magnetic field at the sites of interest. The studies were performed on a hydrodynamic stand developed at the Institute of Experimental Medicine of the Almazov National Medical Research Centre of the Ministry of Health of Russia. RESULTS: The use of neodymium magnets facilitated selective accumulation of MNPs. One minute after the administration of MNPs-ICG to mice with a tumour, MNPs-ICG predominantly accumulated in the liver, in the absence and presence of a magnetic field, which indicates its metabolic pathway. The intensity of the fluorescence in the animals' livers did not change over time, although an increase in fluorescence in the tumour was observed in the presence of a magnetic field. CONCLUSION: This type of MNP, used in combination with a magnetic field of calculated strength, can form the basis for the development of magnetically controlled transport of cytostatic drugs into tumour tissue.

摘要

背景:一种有前途的解决细胞毒性问题的方法是使用磁性纳米粒子(MNPs)进行靶向药物输送。

目的:使用计算来确定控制体内 MNPs 的磁场的最佳特性,并评估 MNPs 在体外和体内向小鼠肿瘤部位的磁控递药的效率。

材料与方法:在体外研究中使用参考 MNPs,而在体内研究中使用聚乳酸涂层的荧光吲哚菁绿 MNPs(MNPs-ICG)。在有和没有磁场的情况下,在有肿瘤的小鼠中进行体内发光强度研究。这些研究是在俄罗斯卫生部阿马佐夫国家医学研究中心实验医学研究所开发的流体动力学台上进行的。

结果:使用钕磁铁有助于 MNPs 的选择性积累。在向有肿瘤的小鼠给药 MNPs-ICG 一分钟后,MNPs-ICG 主要在肝脏中积累,无论是在没有磁场还是有磁场的情况下,这表明了其代谢途径。尽管在存在磁场的情况下观察到肿瘤中的荧光强度增加,但动物肝脏中的荧光强度随时间没有变化。

结论:这种类型的 MNPs,与计算强度的磁场结合使用,可以为开发将细胞毒性药物磁控递送至肿瘤组织的方法奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/578b58e00420/IJN-16-5651-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/87a35e32eeb7/IJN-16-5651-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/8725f15a52c0/IJN-16-5651-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/3b0ac1d2665b/IJN-16-5651-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/65ba032d5d4d/IJN-16-5651-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/33dba143a161/IJN-16-5651-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/1215a617bb3c/IJN-16-5651-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/25c21367d0d9/IJN-16-5651-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/92a62b1be392/IJN-16-5651-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/71cae4066709/IJN-16-5651-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/8c3fc0f138a2/IJN-16-5651-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/144e60b50fd8/IJN-16-5651-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/99d7ba9af321/IJN-16-5651-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/3d7c4e443b77/IJN-16-5651-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/578b58e00420/IJN-16-5651-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/87a35e32eeb7/IJN-16-5651-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/8725f15a52c0/IJN-16-5651-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/3b0ac1d2665b/IJN-16-5651-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/65ba032d5d4d/IJN-16-5651-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/33dba143a161/IJN-16-5651-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/1215a617bb3c/IJN-16-5651-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/25c21367d0d9/IJN-16-5651-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/92a62b1be392/IJN-16-5651-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/71cae4066709/IJN-16-5651-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/8c3fc0f138a2/IJN-16-5651-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/144e60b50fd8/IJN-16-5651-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/99d7ba9af321/IJN-16-5651-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/3d7c4e443b77/IJN-16-5651-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/8384349/578b58e00420/IJN-16-5651-g0014.jpg

相似文献

[1]
Controlling the Movement of Magnetic Iron Oxide Nanoparticles Intended for Targeted Delivery of Cytostatics.

Int J Nanomedicine. 2021

[2]
Tumor targeting by lentiviral vectors combined with magnetic nanoparticles in mice.

Acta Biomater. 2017-9-1

[3]
Selective Magnetic Nanoheating: Combining Iron Oxide Nanoparticles for Multi-Hot-Spot Induction and Sequential Regulation.

Nano Lett. 2021-9-8

[4]
Surface functionalized magnetic nanoparticles shift cell behavior with on/off magnetic fields.

J Cell Physiol. 2018-2

[5]
Investigation of magnetically driven passage of magnetic nanoparticles through eye tissues for magnetic drug targeting.

Nanotechnology. 2020-12-4

[6]
Pulsed magnetic field improves the transport of iron oxide nanoparticles through cell barriers.

ACS Nano. 2013-2-13

[7]
Increased accumulation of magnetic nanoparticles by magnetizable implant materials for the treatment of implant-associated complications.

J Nanobiotechnology. 2013-10-10

[8]
The surface coating of iron oxide nanoparticles drives their intracellular trafficking and degradation in endolysosomes differently depending on the cell type.

Biomaterials. 2022-2

[9]
Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells.

Nanotechnology. 2018-3-2

[10]
Magnetic targeting of adoptively transferred tumour-specific nanoparticle-loaded CD8 T cells does not improve their tumour infiltration in a mouse model of cancer but promotes the retention of these cells in tumour-draining lymph nodes.

J Nanobiotechnology. 2019-8-6

本文引用的文献

[1]
Dual-responsive biohybrid neutrobots for active target delivery.

Sci Robot. 2021-3-24

[2]
Magnetic nanoparticle-loaded polymer nanospheres as magnetic hyperthermia agents.

J Mater Chem B. 2014-1-7

[3]
Innovative approaches for cancer treatment: current perspectives and new challenges.

Ecancermedicalscience. 2019

[4]
Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application.

Acta Pharm Sin B. 2019-7

[5]
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2018-9-12

[6]
Biologically Targeted Magnetic Hyperthermia: Potential and Limitations.

Front Pharmacol. 2018-8-2

[7]
Challenges in realizing selectivity for nanoparticle biodistribution and clearance: lessons from gold nanoparticles.

Ther Deliv. 2017-8

[8]
In vitro toxicity of FeO, FeO-SiO composite, and SiO-FeO core-shell magnetic nanoparticles.

Int J Nanomedicine. 2017-1-13

[9]
For Better or Worse, Iron Overload by Superparamagnetic Iron Oxide Nanoparticles as a MRI Contrast Agent for Chronic Liver Diseases.

Chem Res Toxicol. 2017-1-17

[10]
Effect of PEG molecular weight on stability, T₂ contrast, cytotoxicity, and cellular uptake of superparamagnetic iron oxide nanoparticles (SPIONs).

Colloids Surf B Biointerfaces. 2014-7-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索