Kongu Engineering College, Erode, Tamil Nadu, India.
Aravind Eye Hospital, Salem, Tamil Nadu, India.
Surv Ophthalmol. 2022 May-Jun;67(3):801-816. doi: 10.1016/j.survophthal.2021.08.004. Epub 2021 Aug 25.
Interpretation of topographical maps used to detect corneal ectasias requires a high level of expertise. Several artificial intelligence (AI) technologies have attempted to interpret topographic maps. The purpose of this study is to provide a review of AI algorithms in corneal topography from the perspectives of an eye care professional, a biomedical engineer, and a data scientist. A systematic literature review using Web of Science, Pubmed, and Google Scholar was performed from 2010 to 2020 on themes regarding imaging modalities, their parameters, purpose, and conclusions and their samples and performance related to AI in corneal topography. We provide a comprehensive summary of advances in corneal imaging and its applications in AI. Combined metrics from the Dual Scheimpflug and Placido device could be a good starting point to try AI models in corneal imaging systems. The range of area under the receiving operating curve for AI in keratoconus detection and classification was from 0.87 to 1, sensitivity was from 0.89 to 1, and specificity was from 0.82 to 1. A combination of different types of AI applications to corneal ectasia diagnosis is recommended.
解读用于检测角膜扩张的地形地图需要高度的专业知识。已经有几种人工智能 (AI) 技术尝试解读地形地图。本研究的目的是从眼科医生、生物医学工程师和数据科学家的角度,对角膜地形学中的 AI 算法进行综述。从 2010 年到 2020 年,我们使用 Web of Science、Pubmed 和 Google Scholar 进行了系统性文献回顾,主题涉及成像方式、其参数、目的和结论及其与 AI 相关的样本和性能在角膜地形学中的应用。我们全面总结了角膜成像及其在 AI 中的应用的进展。双 Scheimpflug 和 Placido 设备的综合指标可以作为尝试在角膜成像系统中使用 AI 模型的良好起点。AI 在圆锥角膜检测和分类中的接收者操作曲线下面积的范围为 0.87 到 1,灵敏度为 0.89 到 1,特异性为 0.82 到 1。建议将不同类型的 AI 应用组合用于角膜扩张症的诊断。