Suppr超能文献

用于溢油清理的纤维素和纳米纤维素材料的现状

Current Status of Cellulosic and Nanocellulosic Materials for Oil Spill Cleanup.

作者信息

Fürtauer Siegfried, Hassan Mostafa, Elsherbiny Ahmed, Gabal Shaimaa A, Mehanny Sherif, Abushammala Hatem

机构信息

Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany.

Mechanical Design & Production Department, Faculty of Engineering, Cairo University, Cairo 12613, Egypt.

出版信息

Polymers (Basel). 2021 Aug 16;13(16):2739. doi: 10.3390/polym13162739.

Abstract

Recent developments in the application of lignocellulosic materials for oil spill removal are discussed in this review article. The types of lignocellulosic substrate material and their different chemical and physical modification strategies and basic preparation techniques are presented. The morphological features and the related separation mechanisms of the materials are summarized. The material types were classified into 3D-materials such as hydrophobic and oleophobic sponges and aerogels, or 2D-materials such as membranes, fabrics, films, and meshes. It was found that, particularly for 3D-materials, there is a clear correlation between the material properties, mainly porosity and density, and their absorption performance. Furthermore, it was shown that nanocellulosic precursors are not exclusively suitable to achieve competitive porosity and therefore absorption performance, but also bulk cellulose materials. This finding could lead to developments in cost- and energy-efficient production processes of future lignocellulosic oil spillage removal materials.

摘要

这篇综述文章讨论了木质纤维素材料在去除石油泄漏方面应用的最新进展。介绍了木质纤维素基底材料的类型及其不同的化学和物理改性策略以及基本制备技术。总结了材料的形态特征和相关分离机制。材料类型分为三维材料,如疏水疏油海绵和气凝胶,或二维材料,如膜、织物、薄膜和网。研究发现,特别是对于三维材料,材料性能(主要是孔隙率和密度)与其吸收性能之间存在明显的相关性。此外,研究表明,纳米纤维素前体并非唯一适合实现具有竞争力的孔隙率从而获得吸收性能的材料,块状纤维素材料也适用。这一发现可能会推动未来木质纤维素石油泄漏清除材料的低成本、节能生产工艺的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7770/8400096/4c2399a25621/polymers-13-02739-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验