文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

A Comprehensive Review of Microneedles: Types, Materials, Processes, Characterizations and Applications.

作者信息

Aldawood Faisal Khaled, Andar Abhay, Desai Salil

机构信息

Industrial Engineering Department, College of Engineering, University of Bisha, Bisha 67714, Saudi Arabia.

Potomac Photonics, Inc., Halethorpe, MD 21227, USA.

出版信息

Polymers (Basel). 2021 Aug 22;13(16):2815. doi: 10.3390/polym13162815.


DOI:10.3390/polym13162815
PMID:34451353
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8400269/
Abstract

Drug delivery through the skin offers many advantages such as avoidance of hepatic first-pass metabolism, maintenance of steady plasma concentration, safety, and compliance over oral or parenteral pathways. However, the biggest challenge for transdermal delivery is that only a limited number of potent drugs with ideal physicochemical properties can passively diffuse and intercellularly permeate through skin barriers and achieve therapeutic concentration by this route. Significant efforts have been made toward the development of approaches to enhance transdermal permeation of the drugs. Among them, microneedles represent one of the microscale physical enhancement methods that greatly expand the spectrum of drugs for transdermal and intradermal delivery. Microneedles typically measure 0.1-1 mm in length. In this review, microneedle materials, fabrication routes, characterization techniques, and applications for transdermal delivery are discussed. A variety of materials such as silicon, stainless steel, and polymers have been used to fabricate solid, coated, hollow, or dissolvable microneedles. Their implications for transdermal drug delivery have been discussed extensively. However, there remain challenges with sustained delivery, efficacy, cost-effective fabrication, and large-scale manufacturing. This review discusses different modes of characterization and the gaps in manufacturing technologies associated with microneedles. This review also discusses their potential impact on drug delivery, vaccine delivery, disease diagnostic, and cosmetics applications.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/8b35b32d4b5a/polymers-13-02815-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/fabe471c5931/polymers-13-02815-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/31bce5f56840/polymers-13-02815-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/ab67459cc499/polymers-13-02815-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/e2c99cfe7e5c/polymers-13-02815-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/3c541944cb1e/polymers-13-02815-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/d77db42f0d0f/polymers-13-02815-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/6ad5b94819a4/polymers-13-02815-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/e4959c8e5ef9/polymers-13-02815-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/b578f3e8c696/polymers-13-02815-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/441b2c46a367/polymers-13-02815-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/bae68e36a8dd/polymers-13-02815-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/194f642db121/polymers-13-02815-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/c3240af63589/polymers-13-02815-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/6ba56736a8ef/polymers-13-02815-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/4b6747f5151b/polymers-13-02815-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/af2a42e4c2d8/polymers-13-02815-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/eae8fd62bfb8/polymers-13-02815-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/61b94983cf19/polymers-13-02815-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/8b35b32d4b5a/polymers-13-02815-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/fabe471c5931/polymers-13-02815-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/31bce5f56840/polymers-13-02815-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/ab67459cc499/polymers-13-02815-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/e2c99cfe7e5c/polymers-13-02815-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/3c541944cb1e/polymers-13-02815-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/d77db42f0d0f/polymers-13-02815-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/6ad5b94819a4/polymers-13-02815-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/e4959c8e5ef9/polymers-13-02815-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/b578f3e8c696/polymers-13-02815-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/441b2c46a367/polymers-13-02815-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/bae68e36a8dd/polymers-13-02815-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/194f642db121/polymers-13-02815-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/c3240af63589/polymers-13-02815-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/6ba56736a8ef/polymers-13-02815-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/4b6747f5151b/polymers-13-02815-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/af2a42e4c2d8/polymers-13-02815-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/eae8fd62bfb8/polymers-13-02815-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/61b94983cf19/polymers-13-02815-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3201/8400269/8b35b32d4b5a/polymers-13-02815-g019.jpg

相似文献

[1]
A Comprehensive Review of Microneedles: Types, Materials, Processes, Characterizations and Applications.

Polymers (Basel). 2021-8-22

[2]
Current trends in polymer microneedle for transdermal drug delivery.

Int J Pharm. 2020-9-25

[3]
Transdermal Delivery of Drugs with Microneedles-Potential and Challenges.

Pharmaceutics. 2015-6-29

[4]
Advances in microneedle-based transdermal delivery for drugs and peptides.

Drug Deliv Transl Res. 2022-7

[5]
Dissolving microneedles: Applications and growing therapeutic potential.

J Control Release. 2022-8

[6]
Microneedle for transdermal drug delivery: current trends and fabrication.

J Pharm Investig. 2021

[7]
Microneedle-Mediated Transdermal Delivery of Biopharmaceuticals.

Pharmaceutics. 2023-1-13

[8]
A Review of 3D-Printing of Microneedles.

Pharmaceutics. 2022-12-1

[9]
Recent Advances in Microneedle Platforms for Transdermal Drug Delivery Technologies.

Polymers (Basel). 2021-7-22

[10]
Microneedles: A smart approach and increasing potential for transdermal drug delivery system.

Biomed Pharmacother. 2018-11-9

引用本文的文献

[1]
Research progress of dissolving microneedles in the field of component administration of traditional Chinese medicine.

Front Pharmacol. 2025-8-13

[2]
Recent Developments in Microneedle Biosensors for Biomedical and Agricultural Applications.

Micromachines (Basel). 2025-8-13

[3]
Recent advances and perspectives of MicroNeedles for biomedical applications.

Biophys Rev. 2025-4-24

[4]
Formulation and evaluation of PVA-sucrose dissolving microneedles loaded with glimepiride nanocrystals as a potential transdermal delivery system.

RSC Adv. 2025-7-10

[5]
Electrochemical Microneedles for Real-Time Monitoring in Interstitial Fluid: Emerging Technologies and Future Directions.

Biosensors (Basel). 2025-6-12

[6]
Fabrication of porous polymeric microneedles: a concise overview.

RSC Adv. 2025-6-4

[7]
Microneedle Innovations in Oral Therapeutics: Transforming Protein and Peptide Delivery.

AAPS PharmSciTech. 2025-5-28

[8]
Microneedles for Melanoma Therapy: Exploring Opportunities and Challenges.

Pharmaceutics. 2025-4-28

[9]
Evaluation of the efficacy of microneedling alone and in combination with injectable hyaluronic acid in augmentation of peri-implant soft tissues: A randomized controlled trial.

J Indian Soc Periodontol. 2024

[10]
Enhancing melanoma therapy with hydrogel microneedles.

Front Oncol. 2025-4-17

本文引用的文献

[1]
Microneedle-based bioassays.

Nanoscale Adv. 2020-9-18

[2]
Immediate separation of microneedle tips from base array during skin insertion for instantaneous drug delivery.

RSC Adv. 2018-5-15

[3]
Orientation effects on the nanoscale adsorption behavior of bone morphogenetic protein-2 on hydrophilic silicon dioxide.

RSC Adv. 2019-1-8

[4]
Molecular Dynamics Investigation of the Deformation Mechanism of Gold with Variations in Mold Profiles during Nanoimprinting.

Materials (Basel). 2021-5-14

[5]
3D printing as a transformative tool for microneedle systems: Recent advances, manufacturing considerations and market potential.

Adv Drug Deliv Rev. 2021-6

[6]
Enhancement strategies for transdermal drug delivery systems: current trends and applications.

Drug Deliv Transl Res. 2022-4

[7]
Reducing False Negatives in COVID-19 Testing by Using Microneedle-Based Oropharyngeal Swabs.

Matter. 2020-11-4

[8]
Current trends in polymer microneedle for transdermal drug delivery.

Int J Pharm. 2020-9-25

[9]
Microneedle-Based Delivery: An Overview of Current Applications and Trends.

Pharmaceutics. 2020-6-19

[10]
Combating atherosclerosis with targeted Diosmin nanoparticles-treated experimental diabetes.

Invest New Drugs. 2020-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索