Suppr超能文献

基于基因的机器学习分类器在评估口服阿片类药物使用者发生阿片类物质使用障碍风险中的临床性能:一项前瞻性观察研究。

Clinical Performance of a Gene-Based Machine Learning Classifier in Assessing Risk of Developing OUD in Subjects Taking Oral Opioids: A Prospective Observational Study.

作者信息

Donaldson Keri, Cardamone David, Genovese Michael, Garbely Joseph, Demers Laurence

机构信息

SOLVD Health, Hershey, PA, USA.

SOLVD Health, Hershey, PA, USA

出版信息

Ann Clin Lab Sci. 2021 Jul;51(4):451-460.

Abstract

OBJECTIVE

To reduce the incidence of Opioid Use Disorder (OUD), multiple guidelines recommend assessing the risk of OUD prior to prescribing oral opioids. Although subjective risk assessments are available to help classify subjects at risk for OUD, we are aware of no clinically validated objective risk assessment tools. An objective risk assessment based on genetics may help inform shared decision-making prior to prescribing short-duration oral opioids.

METHODS

A multicenter, observational cohort of adults exposed to prescription oral opioids for 4-30 days was conducted to determine the performance of an OUD classifier derived from machine learning (ML). From this cohort, the demographics of the U.S. adult opioid-prescribed population were used to create a blinded, random, representative group of subjects (n=385) for analysis to accurately estimate the performance characteristics in the intended use population. Genotyping was performed via a qualitative SNP microarray on DNA extracted from buccal samples.

RESULTS

In the study subjects, the classifier demonstrated 82.5% sensitivity (95% confidence intervals: 76.1%-87.8%) and 79.9% specificity (73.7-85.2%), with no statistically significant differences in clinical performance observed based on gender, age, length of follow-up from opioid exposure, race, or ethnicity.

CONCLUSION

This study demonstrates an ML classifier may provide additional objective information regarding a patient's risk of developing OUD. This information may enable subjects and healthcare providers to make more informed decisions when considering the use of oral opioids.

摘要

目的

为降低阿片类药物使用障碍(OUD)的发生率,多项指南建议在开具口服阿片类药物之前评估OUD风险。尽管有主观风险评估可帮助对有OUD风险的受试者进行分类,但我们所知尚无经过临床验证的客观风险评估工具。基于遗传学的客观风险评估可能有助于在开具短期口服阿片类药物之前为共同决策提供信息。

方法

开展了一项针对成年人的多中心观察性队列研究,这些成年人接受处方口服阿片类药物治疗4至30天,以确定源自机器学习(ML)的OUD分类器的性能。从该队列中,利用美国成年阿片类药物处方人群的人口统计学数据创建了一个盲法、随机、具有代表性的受试者组(n = 385)用于分析,以准确估计目标使用人群中的性能特征。通过定性SNP微阵列对从颊拭子样本中提取的DNA进行基因分型。

结果

在研究对象中,该分类器显示出82.5%的敏感性(95%置信区间:76.1%-87.8%)和79.9%的特异性(73.7-85.2%),基于性别、年龄、阿片类药物暴露后的随访时长、种族或民族,未观察到临床性能存在统计学显著差异。

结论

本研究表明,一个ML分类器可能会提供关于患者发生OUD风险的额外客观信息。这些信息可能使受试者和医疗保健提供者在考虑使用口服阿片类药物时能够做出更明智的决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验