Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA.
Saint Louis University School of Medicine, Medicine, Saint Louis, MO, USA.
Health Informatics J. 2023 Apr-Jun;29(2):14604582231168826. doi: 10.1177/14604582231168826.
Existing predictive models of opioid use disorder (OUD) may change as the rate of opioid prescribing decreases. Using Veterans Administration's EHR data, we developed machine-learning predictive models of new OUD diagnoses and ranked the importance of patient features based on their ability to predict a new OUD diagnosis in 2000-2012 and 2013-2021. Using patient characteristics, the three separate machine learning techniques were comparable in predicting OUD, achieving an accuracy of >80%. Using the random forest classifier, opioid prescription features such as early refills and length of prescription consistently ranked among the top five factors that predict new OUD. Younger age was positively associated with new OUD, and older age inversely associated with new OUD. Age stratification revealed prior substance abuse and alcohol dependency as more impactful in predicting OUD for younger patients. There was no significant difference in the set of factors associated with new OUD in 2000-2012 compared to 2013-2021. Characteristics of opioid prescriptions are the most impactful variables that predict new OUD both before and after the peak in opioid prescribing rates. Predictive models should be tailored to age groups. Further research is warranted to determine if machine learning models perform better when tailored to other patient subgroups.
现有的阿片类药物使用障碍(OUD)预测模型可能会随着阿片类药物处方率的下降而改变。我们利用退伍军人事务部的电子健康记录数据,为新的 OUD 诊断开发了机器学习预测模型,并根据它们在 2000-2012 年和 2013-2021 年预测新 OUD 诊断的能力对患者特征的重要性进行了排名。使用患者特征,三种单独的机器学习技术在预测 OUD 方面具有可比性,准确率均>80%。使用随机森林分类器,阿片类药物处方的特征,如早期续方和处方长度,始终排在预测新 OUD 的前五个因素之列。年龄越小,与新 OUD 呈正相关,年龄越大,与新 OUD 呈负相关。年龄分层显示,与年轻患者相比,先前的物质滥用和酒精依赖对预测 OUD 的影响更大。与 2000-2012 年相比,2013-2021 年与新 OUD 相关的因素集没有显著差异。阿片类药物处方的特征是预测新 OUD 的最具影响力的变量,无论是在阿片类药物处方率达到峰值之前还是之后。预测模型应针对年龄组进行调整。需要进一步研究以确定机器学习模型在针对其他患者亚组进行调整时是否表现更好。