Suppr超能文献

一种用于预测阿片类物质使用障碍遗传风险的算法中候选基因的效用。

Utility of Candidate Genes From an Algorithm Designed to Predict Genetic Risk for Opioid Use Disorder.

作者信息

Davis Christal N, Jinwala Zeal, Hatoum Alexander S, Toikumo Sylvanus, Agrawal Arpana, Rentsch Christopher T, Edenberg Howard J, Baurley James W, Hartwell Emily E, Crist Richard C, Gray Joshua C, Justice Amy C, Gelernter Joel, Kember Rachel L, Kranzler Henry R

机构信息

Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania.

Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia.

出版信息

JAMA Netw Open. 2025 Jan 2;8(1):e2453913. doi: 10.1001/jamanetworkopen.2024.53913.

Abstract

IMPORTANCE

Recently, the US Food and Drug Administration gave premarketing approval to an algorithm based on its purported ability to identify individuals at genetic risk for opioid use disorder (OUD). However, the clinical utility of the candidate genetic variants included in the algorithm has not been independently demonstrated.

OBJECTIVE

To assess the utility of 15 genetic variants from an algorithm intended to predict OUD risk.

DESIGN, SETTING, AND PARTICIPANTS: This case-control study examined the association of 15 candidate genetic variants with risk of OUD using electronic health record data from December 20, 1992, to September 30, 2022. Electronic health record data, including pharmacy records, were accrued from participants in the Million Veteran Program across the US with opioid exposure (n = 452 664). Cases with OUD were identified using International Classification of Diseases, Ninth Revision, or International Classification of Diseases, Tenth Revision, diagnostic codes, and controls were individuals with no OUD diagnosis.

EXPOSURES

Number of risk alleles present across 15 candidate genetic variants.

MAIN OUTCOME AND MEASURES

Performance of 15 genetic variants for identifying OUD risk assessed via logistic regression and machine learning models.

RESULTS

A total of 452 664 individuals with opioid exposure (including 33 669 with OUD) had a mean (SD) age of 61.15 (13.37) years, and 90.46% were male; the sample was ancestrally diverse (with individuals of genetically inferred European, African, and admixed American ancestries). Using Nagelkerke R2, collectively, the 15 candidate genes accounted for 0.40% of variation in OUD risk. In comparison, age and sex alone accounted for 3.27% of the variation. The ensemble machine learning. The ensemble machine learning model using the 15 variants as predictive factors correctly classified 52.83% (95% CI, 52.07%-53.59%) of individuals in an independent testing sample.

CONCLUSIONS AND RELEVANCE

Results of this study suggest that the candidate genetic variants included in the approved algorithm do not meet reasonable standards of efficacy in identifying OUD risk. Given the algorithm's limited predictive accuracy, its use in clinical care would lead to high rates of both false-positive and false-negative findings. More clinically useful models are needed to identify individuals at risk of developing OUD.

摘要

重要性

最近,美国食品药品监督管理局基于其声称的识别阿片类药物使用障碍(OUD)遗传风险个体的能力,给予了一种算法上市前批准。然而,该算法中包含的候选基因变异的临床效用尚未得到独立验证。

目的

评估一种旨在预测OUD风险的算法中的15个基因变异的效用。

设计、设置和参与者:这项病例对照研究使用1992年12月20日至2022年9月30日的电子健康记录数据,研究了15个候选基因变异与OUD风险的关联。电子健康记录数据,包括药房记录,来自美国百万退伍军人计划中接触过阿片类药物的参与者(n = 452664)。使用国际疾病分类第九版或第十版诊断代码识别出患有OUD的病例,对照组为未被诊断为OUD的个体。

暴露因素

15个候选基因变异中存在的风险等位基因数量。

主要结局和指标

通过逻辑回归和机器学习模型评估15个基因变异识别OUD风险的性能。

结果

共有452664名接触过阿片类药物的个体(包括33669名患有OUD的个体),平均(标准差)年龄为61.15(13.37)岁,90.46%为男性;该样本在血统上具有多样性(包括基因推断为欧洲、非洲和混合美洲血统的个体)。总体而言,使用Nagelkerke R2,这15个候选基因占OUD风险变异的0.40%。相比之下,仅年龄和性别就占变异的3.27%。集成机器学习。使用这15个变异作为预测因素的集成机器学习模型在独立测试样本中正确分类了52.83%(95%CI,52.07%-53.59%)的个体。

结论和相关性

本研究结果表明,获批算法中包含的候选基因变异在识别OUD风险方面未达到合理的疗效标准。鉴于该算法的预测准确性有限,其在临床护理中的使用将导致高比例的假阳性和假阴性结果。需要更具临床实用性的模型来识别有发展为OUD风险的个体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eab/11718552/12610f54ee49/jamanetwopen-e2453913-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验