Université de Strasbourg, CNRS, M3I UPR 9022, Strasbourg, France; and.
Unité de Recherche Environnement, Génomique et Protéomique, Faculté des Sciences, Université Saint-Joseph de Beyrouth-Liban, Mar Roukos, Mkalles, Beirut, Lebanon.
J Immunol. 2021 Sep 15;207(6):1616-1626. doi: 10.4049/jimmunol.1901497. Epub 2021 Aug 27.
The evolutionarily conserved immune deficiency (IMD) signaling pathway shields against bacterial infections. It regulates the expression of antimicrobial peptides encoding genes through the activation of the NF-κB transcription factor Relish. Tight regulation of the signaling cascade ensures a balanced immune response, which is otherwise highly harmful. Several phosphorylation events mediate intracellular progression of the IMD pathway. However, signal termination by dephosphorylation remains largely elusive. Here, we identify the highly conserved protein phosphatase 4 (PP4) complex as a bona fide negative regulator of the IMD pathway. RNA interference-mediated gene silencing of , , and which encode the catalytic and regulatory subunits of the phosphatase complex, respectively, caused a marked upregulation of bacterial-induced antimicrobial peptide gene expression in both S2 cells and adult flies. Deregulated IMD signaling is associated with reduced lifespan of -deficient flies in the absence of any infection. In contrast, flies overexpressing this phosphatase are highly sensitive to bacterial infections. Altogether, our results highlight an evolutionarily conserved function of PP4c in the regulation of NF-κB signaling from to mammals.
进化保守的免疫缺陷(IMD)信号通路可抵御细菌感染。它通过激活 NF-κB 转录因子 Relish 来调节编码抗菌肽的基因的表达。信号级联的严格调节可确保平衡的免疫反应,否则该反应非常有害。几个磷酸化事件介导 IMD 途径的细胞内进展。然而,去磷酸化介导的信号终止在很大程度上仍难以捉摸。在这里,我们将高度保守的蛋白磷酸酶 4(PP4)复合物鉴定为 IMD 途径的真正负调节剂。通过 RNA 干扰介导的基因沉默分别编码该磷酸酶复合物的催化和调节亚基的 、 和 ,导致 S2 细胞和成年果蝇中细菌诱导的抗菌肽基因表达明显上调。在没有任何感染的情况下,-缺陷果蝇的 IMD 信号失调与寿命缩短有关。相比之下,过度表达这种磷酸酶的果蝇对细菌感染高度敏感。总之,我们的研究结果强调了 PP4c 在从 到哺乳动物的 NF-κB 信号调节中的进化保守功能。