Suppr超能文献

机器学习在烟草研究中的应用:范围综述。

Machine learning applications in tobacco research: a scoping review.

机构信息

Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada.

Ontario Tobacco Research Unit, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.

出版信息

Tob Control. 2023 Jan;32(1):99-109. doi: 10.1136/tobaccocontrol-2020-056438. Epub 2021 Aug 27.

Abstract

OBJECTIVE

Identify and review the body of tobacco research literature that self-identified as using machine learning (ML) in the analysis.

DATA SOURCES

MEDLINE, EMABSE, PubMed, CINAHL Plus, APA PsycINFO and IEEE Xplore databases were searched up to September 2020. Studies were restricted to peer-reviewed, English-language journal articles, dissertations and conference papers comprising an empirical analysis where ML was identified to be the method used to examine human experience of tobacco. Studies of genomics and diagnostic imaging were excluded.

STUDY SELECTION

Two reviewers independently screened the titles and abstracts. The reference list of articles was also searched. In an iterative process, eligible studies were classified into domains based on their objectives and types of data used in the analysis.

DATA EXTRACTION

Using data charting forms, two reviewers independently extracted data from all studies. A narrative synthesis method was used to describe findings from each domain such as study design, objective, ML classes/algorithms, knowledge users and the presence of a data sharing statement. Trends of publication were visually depicted.

DATA SYNTHESIS

74 studies were grouped into four domains: ML-powered technology to assist smoking cessation (n=22); content analysis of tobacco on social media (n=32); smoker status classification from narrative clinical texts (n=6) and tobacco-related outcome prediction using administrative, survey or clinical trial data (n=14). Implications of these studies and future directions for ML researchers in tobacco control were discussed.

CONCLUSIONS

ML represents a powerful tool that could advance the research and policy decision-making of tobacco control. Further opportunities should be explored.

摘要

目的

识别和回顾自我认定在分析中使用机器学习 (ML) 的烟草研究文献。

资料来源

截至 2020 年 9 月,在 MEDLINE、EMABSE、PubMed、CINAHL Plus、APA PsycINFO 和 IEEE Xplore 数据库中进行了搜索。研究仅限于同行评议的、以英语发表的期刊文章、论文和会议论文,这些论文包含对人类烟草体验进行分析的实证研究,其中 ML 被确定为使用的方法。排除基因组学和诊断成像研究。

研究选择

两名审查员独立筛选标题和摘要。还搜索了文章的参考文献列表。在迭代过程中,根据目标和分析中使用的数据类型,将合格的研究归入不同领域。

数据提取

两名审查员使用数据图表表格独立地从所有研究中提取数据。使用叙述性综合方法描述每个领域的发现,例如研究设计、目标、ML 类/算法、知识用户和数据共享声明的存在。出版趋势以可视化方式呈现。

数据综合

74 项研究分为四个领域:用于帮助戒烟的 ML 驱动技术(n=22);社交媒体上的烟草内容分析(n=32);叙事临床文本中的吸烟者状态分类(n=6)和使用行政、调查或临床试验数据预测烟草相关结果(n=14)。讨论了这些研究的意义和烟草控制领域 ML 研究人员的未来方向。

结论

ML 代表一种强大的工具,可以推动烟草控制的研究和政策决策。应该探索更多的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验