Suppr超能文献

机器学习在多病种研究中的应用:系统评价方案。

Application of Machine Learning in Multimorbidity Research: Protocol for a Scoping Review.

机构信息

Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Gistrup, Denmark.

Clinic for Rehabilitation and Palliative Medicine, Rigshospitalet, Copenhagen, Denmark.

出版信息

JMIR Res Protoc. 2024 May 20;13:e53761. doi: 10.2196/53761.

Abstract

BACKGROUND

Multimorbidity, defined as the coexistence of multiple chronic conditions, poses significant challenges to health care systems on a global scale. It is associated with increased mortality, reduced quality of life, and increased health care costs. The burden of multimorbidity is expected to worsen if no effective intervention is taken. Machine learning has the potential to assist in addressing these challenges since it offers advanced analysis and decision-making capabilities, such as disease prediction, treatment development, and clinical strategies.

OBJECTIVE

This paper represents the protocol of a scoping review that aims to identify and explore the current literature concerning the use of machine learning for patients with multimorbidity. More precisely, the objective is to recognize various machine learning models, the patient groups involved, features considered, types of input data, the maturity of the machine learning algorithms, and the outcomes from these machine learning models.

METHODS

The scoping review will be based on the guidelines of the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews). Five databases (PubMed, Embase, IEEE, Web of Science, and Scopus) are chosen to conduct a literature search. Two reviewers will independently screen the titles, abstracts, and full texts of identified studies based on predefined eligibility criteria. Covidence (Veritas Health Innovation Ltd) will be used as a tool for managing and screening papers. Only studies that examine more than 1 chronic disease or individuals with a single chronic condition at risk of developing another will be included in the scoping review. Data from the included studies will be collected using Microsoft Excel (Microsoft Corp). The focus of the data extraction will be on bibliographical information, objectives, study populations, types of input data, types of algorithm, performance, maturity of the algorithms, and outcome.

RESULTS

The screening process will be presented in a PRISMA-ScR flow diagram. The findings of the scoping review will be conveyed through a narrative synthesis. Additionally, data extracted from the studies will be presented in more comprehensive formats, such as charts or tables. The results will be presented in a forthcoming scoping review, which will be published in a peer-reviewed journal.

CONCLUSIONS

To our knowledge, this may be the first scoping review to investigate the use of machine learning in multimorbidity research. The goal of the scoping review is to summarize the field of literature on machine learning in patients with multiple chronic conditions, highlight different approaches, and potentially discover research gaps. The results will offer insights for future research within this field, contributing to developments that can enhance patient outcomes.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/53761.

摘要

背景

多种慢性疾病同时存在被定义为多种共病,这在全球范围内给医疗保健系统带来了重大挑战。它与死亡率增加、生活质量降低和医疗保健成本增加有关。如果不采取有效的干预措施,多种共病的负担预计会恶化。机器学习具有辅助应对这些挑战的潜力,因为它提供了先进的分析和决策能力,例如疾病预测、治疗开发和临床策略。

目的

本研究报告代表了一项范围综述的方案,旨在确定和探讨当前关于使用机器学习治疗多种共病患者的文献。更具体地说,目标是识别各种机器学习模型、所涉及的患者群体、考虑的特征、输入数据类型、机器学习算法的成熟度以及这些机器学习模型的结果。

方法

范围综述将基于 PRISMA-ScR(系统评价和荟萃分析扩展的首选报告项目)的指南进行。选择五个数据库(PubMed、Embase、IEEE、Web of Science 和 Scopus)进行文献检索。两名评审员将根据预先确定的纳入标准独立筛选已识别研究的标题、摘要和全文。Covidence(Veritas Health Innovation Ltd)将用作管理和筛选论文的工具。只有检查一种以上慢性疾病或患有单一慢性疾病且有发展为另一种疾病风险的个体的研究才会被纳入范围综述。将使用 Microsoft Excel(Microsoft Corp)从纳入的研究中收集数据。数据提取的重点将放在文献信息、目标、研究人群、输入数据类型、算法类型、性能、算法成熟度和结果上。

结果

将以 PRISMA-ScR 流程图呈现筛选过程。范围综述的结果将通过叙述性综合呈现。此外,还将以更全面的格式(如图表或表格)呈现从研究中提取的数据。结果将在即将发表的范围综述中呈现,并发表在同行评议的期刊上。

结论

据我们所知,这可能是第一项调查机器学习在多种共病研究中应用的范围综述。范围综述的目的是总结机器学习在患有多种慢性疾病患者中的文献领域,突出不同的方法,并可能发现研究空白。结果将为该领域的未来研究提供参考,有助于开发可以改善患者预后的方法。

国际注册报告标识符(IRRID):PRR1-10.2196/53761。

相似文献

1
3
Impact of the Exposome in Type 1 Diabetes: Protocol for a Scoping Review.
JMIR Res Protoc. 2025 Jul 17;14:e73424. doi: 10.2196/73424.
4
Health Care Social Robots in the Age of Generative AI: Protocol for a Scoping Review.
JMIR Res Protoc. 2025 Apr 14;14:e63017. doi: 10.2196/63017.
5
Quality indicators for substance use disorder care: a scoping review protocol.
BMJ Open. 2025 Mar 29;15(3):e085216. doi: 10.1136/bmjopen-2024-085216.
10
Eliciting adverse effects data from participants in clinical trials.
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.

引用本文的文献

1
Microenvironment and Tumor Heterogeneity as Pharmacological Targets in Precision Oncology.
Pharmaceuticals (Basel). 2025 Jun 18;18(6):915. doi: 10.3390/ph18060915.
2
Risk prediction models for mortality in patients with multimorbidity: a systematic review and meta-analysis.
Front Public Health. 2025 Apr 2;13:1505541. doi: 10.3389/fpubh.2025.1505541. eCollection 2025.

本文引用的文献

2
Global and regional prevalence of multimorbidity in the adult population in community settings: a systematic review and meta-analysis.
EClinicalMedicine. 2023 Feb 16;57:101860. doi: 10.1016/j.eclinm.2023.101860. eCollection 2023 Mar.
3
Prediction of hospital readmission of multimorbid patients using machine learning models.
PLoS One. 2022 Dec 22;17(12):e0279433. doi: 10.1371/journal.pone.0279433. eCollection 2022.
4
Comparing machine learning algorithms for multimorbidity prediction: An example from the Elsa-Brasil study.
PLoS One. 2022 Oct 7;17(10):e0275619. doi: 10.1371/journal.pone.0275619. eCollection 2022.
5
Multimorbidity.
Nat Rev Dis Primers. 2022 Jul 14;8(1):48. doi: 10.1038/s41572-022-00376-4.
6
Identification of Multimorbidity Patterns in Rheumatoid Arthritis Through Machine Learning.
Arthritis Care Res (Hoboken). 2023 Feb;75(2):220-230. doi: 10.1002/acr.24956. Epub 2022 Oct 19.
7
Scoping reviews: reinforcing and advancing the methodology and application.
Syst Rev. 2021 Oct 8;10(1):263. doi: 10.1186/s13643-021-01821-3.
8
Identifying longitudinal clusters of multimorbidity in an urban setting: A population-based cross-sectional study.
Lancet Reg Health Eur. 2021 Mar 2;3:100047. doi: 10.1016/j.lanepe.2021.100047. eCollection 2021 Apr.
9
Multimorbidity prediction using link prediction.
Sci Rep. 2021 Aug 12;11(1):16392. doi: 10.1038/s41598-021-95802-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验